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abstract: The ecological principle of competitive exclusion states
that species competing for identical resources cannot coexist, but this

avoided if a fluctuating environment altered the competi-
tive superiority of species rapidly enough for all species to
principle is paradoxical because ecologically similar competitors are
regularly observed. Coexistence is possible under some conditions if
a fluctuating environment changes the competitive dominance of spe-
cies. This change in competitive dominance implies the existence of
trade-offs underlying species’ competitive abilities in different envi-
ronments. Theory shows that fluctuating distance between resource
patches can facilitate coexistence in ephemeral patch competitors,
given a functional trade-off between species dispersal ability and fecun-
dity. We find evidence supporting this trade-off in a guild of five eco-
logically similar nonpollinating fig wasps and subsequently predict
local among-patch species densities. We also introduce a novel col-
onization index to estimate relative dispersal ability among ephem-
eral patch competitors. We suggest that a dispersal ability–fecundity
trade-off and spatiotemporally fluctuating resource availability com-
monly co-occur to drive population dynamics and facilitate coexis-
tence in ephemeral patch communities.

Keywords: coexistence, ephemeral patch, competition, trade-offs,
Ficus, dispersal, fig wasp.

Introduction

The coexistence of myriad species of competitors with eco-
logically similar niches has been a longtime focus of com-
munity ecology. Hutchinson (1961) observed multiple eco-
logically similar species in a community as paradoxical,
given the principle of competitive exclusion, which states
that species competing for identical resources cannot coex-
ist (Hardin 1960).

Hutchinson (1961) proposed that fluctuating environ-
mental conditions could lead to the coexistence of similar
competitors, reasoning that competitive exclusion could be
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avoid extinction. Subsequent theoretical work has shown
Hutchinson’s proposal to be supported (e.g., Chesson and
Warner 1981; Chesson 1982) but depends on competitor
life histories and a covariance between environment and
competition (Chesson 1990; Chesson and Huntly 1997).
Coexistence in a fluctuating environment is facilitated by
trade-offs in the ability of species to thrive under different
environmental conditions. Without trade-offs, one species
could conceivably maintain competitive dominance in all
environments, increasing the likelihood of competitive ex-
clusion. Nevertheless, few studies have identified the func-
tional trade-offs that lead to these species-specific responses
(but see, e.g., Angert et al. 2009; Holt and Chesson 2014).
Such trade-offs may facilitate coexistence in ephemeral

patch communities, which are characterized by competition
over patchy resources with rapid turnover (e.g., dung, fruit,
carrion, vernal pools). Patch colonization is usually required
for reproduction in each generation (Hanski 1987), so spa-
tiotemporal fluctuations in patch distribution may be fun-
damental to determining competitor success (Chesson 2000;
Duthie et al. 2014). Competition for ephemeral patches is of-
ten preemptive (Hanski and Kuusela 1977; Kneidel 1983;
Shorrocks and Bingley 1994; Dayton and Fitzgerald 2005),
giving an advantage to highly mobile competitors when
and where colonization is difficult (Yu and Wilson 2001;
Duthie et al. 2014). Given trivial colonization difficulty, com-
petition may instead favor high reproductive output within
patches. Thus, where constant patch availability might lead
to competitive exclusion, spatial (Chesson 2000) or tempo-
ral (Duthie et al. 2014) fluctuations in patch availability
might instead lead to coexistence, given a trade-off between
patch dispersal ability and fecundity.
Trade-offs between dispersal ability and fecundity are

well studied theoretically (e.g., Higgins and Cain 2002; Ama-
rasekare 2003; Amarasekare et al. 2004) and established em-
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pirically (e.g., Zera and Denno 1997; Hughes et al. 2003;
Jervis et al. 2005; Guerra 2011). But for ephemeral patch

pollinator species are usually host fig specific (Weiblen
2002), but one species of fig can host myriad nonpollinating
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systems, theory typically includes little mechanistic de-
tail, focusing more generally on whether intraspecific ag-
gregation can stabilize multispecies assemblages (Atkin-
son and Shorrocks 1981; Sevenster 1996; Heard and Remer
1997; Hartley and Shorrocks 2002; but see Hanski and
Kuusela 1977). Hartley and Shorrocks (2002) call for models
that incorporate individual-level experiences to predict spe-
cies dynamics and distributions, in addition to coexistence.
Previously (Duthie et al. 2014), we showed how a dispersal
ability and fecundity trade-off could facilitate coexistence
in ephemeral patch communities, given a fluctuating dis-
persal distance to receptive patches. Distant patches favored
competitor investment in patch colonization (dispersal in
our model), and nearby patches favored fecund competi-
tors able to maximize within-patch reproduction. Thus, for
ephemeral patch competitors, our model predicts a dispersal-
fecundity trade-off, withmore accessible patches being dom-
inated by species that invest less in dispersal and more in fe-
cundity.

Here we test whether fecundity and dispersal ability neg-
atively covary among five ephemeral patch species.We then
use species trait values to predict species abundances within
patches sampled at different densities; more fecund species
are predicted where patches are dense, and better dispersers
are predicted where patches are isolated. Our results pro-
vide empirical support for our previous theoretical work
(Duthie et al. 2014) and point to an explicit mechanism
underlying the species-specific environmental responses
required for coexistence in ephemeral patch communities.
We additionally propose a new colonization index for esti-
mating species’ abilities to colonize resource patches, which
may be useful in situations where direct measurement of
dispersal ability poses logistical problems.

Methods
Natural History and High Diversity

The nonpollinating fig wasp community surrounding the
of Nonpollinating Fig Wasps

The interaction between figs (Ficus, Moraceae) and their
pollinating wasps (multiple genera, Agaonidae) is a classic
example of an obligate mutualism. Figs rely on typically
host species–specific fig wasps for pollination of flowers en-
closed in urn-shaped inflorescences (hereafter syconia; Jan-
zen 1979). Pollinating wasps oviposit within fig syconia, with
larvae completing development within individual fig ovules.
Typical of most mutualisms (Bronstein 2001), figs and their
pollinating wasps are exploited by species that use resources
at a cost to one or both mutualists. These exploiters include
multiple nonpollinating wasp species whose larvae feed on a
single fig ovule during development. Like pollinators, non-
This content downloaded from 23.235.32
All use subject to JSTOR
species of wasps (Compton and Hawkins 1992).
Wasps cannot maintain standing populations on indi-

vidual fig crowns. Within-crown syconia development is
never continuous; reproductive bouts are often separated
by many months to a few years (Bronstein 1989; Windsor
et al. 1989). Instead, wasps must seek new figs with ovules
receptive for oviposition (Cook and Power 1996; Gates and
Nason 2012). Because most fig species occur at low popu-
lation densities with highly asynchronous among-tree re-
productive activity (Janzen 1979; Nason et al. 1998), wasps
must routinely disperse up to tens of kilometers to reach trees
bearing receptive syconia (Nason et al. 1996, 1998; Ahmed
et al. 2009).
Reproductive success for ovule-feeding nonpollinators

is therefore affected by two life-history stages. First, wasps
must colonize a receptive fig crown. Second, following suc-
cessful colonization, wasps must oviposit into ovules. Re-
source use is thus described by a lottery system, where spe-
cies population growth is determined by the number of
ovules claimed. Interspecific competition occurs if species
overlap in their use of ovule resources, the accessibility of
which is limited by other species at least some of the time
(Sale 1974). Because ephemeral patch communities are de-
fined by spatiotemporally fluctuating resource availability,
the strength of competition is also expected to vary geo-
graphically and over time (Thompson and Cunningham
2002; Thompson 2005). While the strength of competition
among nonpollinating fig wasps has not been estimated,
interspecific competition among nonpollinators should be
comparable to that of pollinators where ovule resources
are limiting and overlapping (e.g., Ghara et al. 2014). Ob-
servations from wild populations find that nonpollinators
regularly compete with pollinators for access to overlap-
ping ovule resources (e.g., West and Herre 1994; Kerdelhué
and Rasplus 1996; West et al. 1996; Kerdelhué et al. 2000;
Ghara and Borges 2010), and experimental manipulations
suggest that observational studies likely underestimate com-
petition (Raja et al. 2014).

Data Collection for Sonoran Desert Test Case
Sonoran Desert rock fig Ficus petiolaris (subgenus Uro-
stigma) is ideal for testing the predicted trade-off between
fecundity and dispersal ability. Ficus petiolaris is sparsely
distributed throughout its range in the Sonoran Desert of
Baja California and adjacent mainland Mexico; we limit
our observations to Baja California, where F. petiolaris is
the only endemic species of fig. Ficus petiolaris is pollinated
by a single unnamed species of Pegoscapus wasp and hosts
a diverse and host-specific nonpollinating fig wasp commu-
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nity (figs. A1, A2 in appendix, available online). Five of
these nonpollinators oviposit from the outside of syconia

able oviposition sites will be low among densely distributed
syconia. Therefore, wasp fecundity is likely to be frequently

Given the small body size of fig wasps, direct observation
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and produce larvae that each feed on a single ovule. They
include three unnamed species of Idarnes (Sycophaginae)
and two unnamed species of Heterandrium (Pteromalidae)
and form the basis of our study. Species are distinguishable
by morphology and mitochondrial DNA sequence and are
regularly found within the same fig syconia using the same
ovule resources for larval development. None of these spe-
cies are parasitized by other nonpollinators, thus minimiz-
ing the potential confounding impact of indirect species in-
teractions (e.g., Holt 1984; Abrams and Matsuda 1996). The
nonpollinator community also includesAepocerus (Pteroma-
lidae)—which appears to gall the outer tissue of fig syco-
nia—and its specialist parasitoid Physothorax (Torymidae),
neither of which was included in our analyses.

In summer 2010, we sampled wasps from F. petiolaris
trees in five sites located from far southern (latitude 23.736)
to north-central (latitude 29.265) Baja California. Sampling
was restricted to 17 trees in which wasps were mature but
had not exited syconia. Sampled trees were surrounded by
varying densities of previously mapped (Gates and Nason
2012) trees that were either in different reproductive phases
or between reproductive bouts. Following the methods of
Bronstein and Hoffmann (1987), we estimated that sampled
trees produced 130–10,696 (m̂p 2,906) syconia (syconia col-
lected per tree: minimump 4, mp 25.7, maximump 48;
451 total syconia sampled). After collection, syconia were
partially cut open and placed in individual vials overnight
(minimum 12 h) to allow wasps to emerge. Emerged wasps
were preserved in 95% ethanol and shipped to Iowa State
University, where species abundances were recorded. We
observed positive counts for all species in syconia absent of
pollinators, suggesting that all species can complete larval
development in unpollinated syconia.

Estimating Egg Load as a Proxy for Fecundity
Travel between natal and receptive trees likely results in

C

l

high dispersal mortality (Compton et al. 1994; McPherson
2005), but upon successful colonization, search time for suit-

Table 1: Galling fig wasps associated with Ficus petiolaris in Baja

Egg load Ovigeny Tota
V ss gg d
w l n a s r
s d y. re
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limited by egg load following colonization (Minkenberg
et al. 1992; Heimpel and Rosenheim 1998; Rosenheim
et al. 2008). Lifetime egg load can be estimated by counting
mature and immature oocytes at emergence (Jervis et al.
2005), as has been used to compare potential fecundity
broadly across holometabolous insects (Jervis et al. 2007)
and specifically among nonpollinating fig wasps (Ghara
and Borges 2010). We therefore use egg load as a proxy
for fecundity, following the procedure of Ghara and Borges
(2010), dissecting 10–15 wasps of each species in a phos-
phate buffer saline solution and under a stereomicroscope.
An acetocarmine stain was used to help count mature and
immature oocytes under a compound microscope. Four
species of nonpollinators were observed to be proovigenic,
having all eggs mature at eclosion (table 1). One species of
Heterandriumwas observed to be synovigenic, having some
immature eggs at eclosion. We define egg load as the num-
ber of eggs that are mature and therefore available to ovi-
posit upon wasp eclosion.

Estimating Dispersal Ability
of dispersal was not feasible. Therefore, we used two indi-
rect methods to estimate the dispersal ability of each spe-
cies. First, we estimated species wing loadings. Second, we
inferred tree colonization ability, using the distributions of
species abundances.
Wing loading is a metric that captures the lift associated

with wing size and the burden associated with body size to
infer an insect’s flying ability (Betts and Wootton 1988).
Normally, wing loading is calculated as the ratio of body
mass to wing area; high values suggest poor flying ability.
Fig wasp mass is difficult to estimate with precision, so we
used body volume instead (for details, see appendix; Yao
2011; Yao and Katagiri 2011).
Flying ability may be only one of multiple traits that af-

fect successful colonization of receptive patches. Patch col-
onization success will directly affect resource exploitation

alifornia, Mexico (all species unnamed)

wing area Wing length Volume Ovipositor length

2 3
Label Genus mean 5 SD index (mm ) (mm) (mm ) (mm)

LO1 Idarnes 75.8 5 2.3 1.0 2.085 5 .069 1.75 5 .04 .351 5 .029 5.52 5 .09
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and hence has a key effect on population dynamics and
competition if resources are limiting. We therefore devel-

this prediction, we estimate the number of reproductive-
sized conspecific trees within a 1-km radius for all syconia

Species egg load was strongly correlated with both metrics
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oped and calculated a new metric that we call the coloniza-
tion index (defined below), which encompasses traits rele-
vant to colonization success that are unknown or difficult
to measure. We propose this index to estimate relative spe-
cies colonization ability in ephemeral patch communities,
especially where dispersal cannot be directly observed.

To calculate the colonization index, we first infer how
difficult each fig tree was to colonize when receptive and
then determine how successful each wasp species was at col-
onizing each tree. We used the mean density of emerging
wasps (including all pollinators and nonpollinators) within
the syconia of the 17 fig trees to estimate how difficult each
tree was to colonize, with low densities indicative of trees
that were difficult to colonize. Colonization should be rela-
tively easy for wasps emerging from nearby trees, but un-
measured or unknown environmental variables—such as
prevailing winds—may also contribute to the ease of col-
onization. A similar technique is well known and widely
used in estimating spatial heterogeneity in parasitism risk
(Pacala and Hassell 1991) and is acknowledged to be ad-
vantageous in encompassing risk factors that are difficult
to measure or unknown (Hassell 2000).

A species’ colonization index corresponds to how con-
stant its relative abundance is across patches with different
colonization difficulties. The abundance of good dispers-
ers will not decrease dramatically in difficult-to-colonize
patches, but the abundance of poor dispersers will drop
relatively quickly. We regressed each wasp species’ mean
per syconium density on a tree against the ease of tree col-
onization (total density of all species per syconium vol-
ume). More positive slope values indicate that a species’
density is especially sensitive to ease of crop colonization
and thus that the species is a poor disperser. We therefore
used the negative slope from this regression as our coloni-
zation index (i.e., we multiplied the slope by 21), so that
higher index values reflect higher species’ colonization abil-
ities. Because males of the three Idarnes species cannot cur-
rently be distinguished on the basis of morphology, only
female wasps were used in constructing each species’ colo-
nization index. Neither the inclusion of males from known
species nor the assignment of all Idarnes males entirely to
any single Idarnes species qualitatively affected our results.

Wasp Distributions on Ephemeral Patches
If a dispersal-fecundity trade-off underlies population dy-
Communities characterized by individuals developing
namics, then these traits should predict the spatial distri-

butions of species. The abundance of species with high
egg loads should be disproportionately high where patches
(trees) are dense, and the abundance of better dispersing
species should be high where patches are sparse. To test
This content downloaded from 23.235.32
All use subject to JSTOR
sampled (mp 41; SDp 29.5; range, 0–85; scale did not qual-
itatively affect our results between 0.5 and 2.0 km; broader
scales were not used because of mapping limitations). We
then regress wasp species densities from syconia (number
per volume syconia) against conspecific neighboring tree
density. Relatively high slopes indicate that local species
abundance increases with patch density, relative to other spe-
cies. Lower slopes indicate relatively low local species abun-
dance, given high patch density. We tested to see whether
slopes estimating the effect of neighboring trees on species
density were correlated with wing loading and egg load.
Additionally, species with similar traits should be corre-

lated in their densities among patches. We therefore test
whether the absolute differences in mean species’ egg loads
andmean species’wing loadings covary with species among
tree density correlations (e.g., there are 5C2 p 10 possible
species pairs, so data points include 10 absolute differences
in species egg load vs. 10 correlations between species abun-
dances among trees). All analyses were conducted using R
(R Development Core Team 2011). All data collected and
used in analyses are deposited in the Dryad Digital Repos-
itory: http://dx.doi.org/10.5061/dryad.4dj10 (Duthie et al.
2015).

Results
of dispersal ability. Egg load was negatively correlated with
our colonization index (Pp .0022, R2 p 0.9702; fig. 1a)
and positively correlatedwith wing loading (Pp .0387, R2 p
0.8058; fig. 1b). Colonization index and wing loading were
negatively correlated (Pp .0404) among species.
Species distributions reflected local tree density. The ef-

fect that the number of neighboring trees had on wasp spe-
cies density from a sampled tree was positively correlated
with both wing loading (Pp .0379, R2 p 0.8085; fig. 2a)
and egg load (Pp .0371, R2 p 0.8111; fig. 2b). Additionally,
among tree correlations between wasp species densities neg-
atively covaried with species’ differences in wing loading
(Pp .0462, R2 p 0.4097; i.e., pairs of species that were
more different in wing loading were less correlated in their
among tree abundances) but not egg load (P > .1, R2 p
0.0985; figs. A1, A2).

Discussion
within—then dispersing between—patchy and ephemeral
resources are ubiquitous and species rich (Beaver 1977;
Hanski 1987). They include species that develop within car-
rion (Beaver 1977), dung (Hanski 1990), fruit (Atkinson
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2003), and temporary wetlands (Hanski and Ranta 1983;
Collinge and Ray 2009). They also include the many par-
asites and parasitoids that develop within ephemerally avail-
able hosts (Hanski 1987; Grenfell and Keeling 2008). The
environment experienced by individuals in these communi-
ties routinely fluctuates because resource accessibility is dy-
namic in space and time. Such environmental fluctuations
can facilitate competitor coexistence if functional trade-offs
cause species to vary in their competitive superiority (e.g.,
Yu and Wilson 2001; Angert et al. 2009; Holt and Chesson
2014).

We previously showed how fluctuating patch accessibil-
ity leads to coexistence among ephemeral patch competitors,
given a trade-off between fecundity and dispersal ability
(Duthie et al. 2014). The negative correlation between egg
load and our colonization index and the positive correla-
tion between egg load and wing loading strongly support a
dispersal-fecundity trade-off in nonpollinators associated
with Ficus petiolaris. Qualitative observations also support
this trade-off; the only synovigenic species we observed also
had the highest colonization index and lowest wing loading.
Synovigenic species are typically longer lived than proovigenic
species (Jervis et al. 2001, 2007) and therefore likely better
patch colonizers. Additionally, egg load and wing loading
predict local species densities. Species with higher egg loads
and wing loadings are relatively more abundant where local
patch density is high, and species with lower egg loads and
This content downloaded from 23.235.32
All use subject to JSTOR
itively correlated in their within-patch abundances. Overall,
we present strong evidence supporting a dispersal-fecundity
trade-off among five species that share a patchy ephemeral
resource. We suggest that fluctuating patch accessibility reg-
ularly drives population dynamics in ephemeral patch com-
munities and likely facilitates species coexistence.
The observed trade-off between egg load and dispersal

ability—and its ability to predict local species distribu-
tions—shows how these traits can be fundamental to un-
derstanding population dynamics in ephemeral patch com-
munities. Where competition occurs, this trade-off will also
facilitate species coexistence (Duthie et al. 2014). Given the
high diversity and resource overlap of nonpollinators asso-
ciated with F. petiolaris, species interactions are likely to
be competitive. Nevertheless, despite high species richness
(Compton and Hawkins 1992), Hawkins and Compton
(1992) suggest that nonpollinating fig wasp communities
may be unsaturated and interspecific competition often
weak because of a lack of resource limitation. It is therefore
important to note that it is possible for the trade-off we ob-
serve to arise in the absence of competition. For example, a
wasp’s investment in egg load versus dispersal ability might
simply maximize expected reproductive success along a
trade-off line rather than at specific trait values (e.g., fig. 1
of Duthie et al. 2014), potentially leading to unique trait
values along this common trade-off line even if no compe-
tition occurs. The importance of competition will be deter-
1985; Duyck et al. 2004), fungi (Jaenike and James 1991;
Wertheim et al. 2000), flowers (Weiblen 2002; Pellmyr

wing loadings are more common where patches are iso-
lated. Species with dissimilar wing loadings were also less pos-
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Figure 1: Correlation between wasp immediate fecundity and colonization index (a) and wasp immediate fecundity and wing loading (b) in
the nonpollinating galler community associated with Ficus petiolaris. Immediate fecundity is defined as the mature egg load upon wasp eclo-
sion. Galling wasps include one long ovipositor species of Idarnes (LO1), two short ovipositor species of Idarnes (SO1 and SO2), and two
species of Heterandrium (Het1 and Het2). Error bars show standard errors.
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1996).
To more quantitatively predict how fluctuating resource

availability drives population dynamics and competitive ex-
clusion or coexistence in ephemeral patch communities, ad-
ditional theory and empirical studies are needed. Theory
demonstrates that spatial (Chesson 2000) and temporal
(Duthie et al. 2014) resource fluctuations can lead to coex-
istence on a local scale, but no tactical models exist to predict
their effect on the dynamics of specific ephemeral patch sys-
tems. Ideally, such models could be applied to communities
amenable to experimental manipulation or long-term obser-
vation, as has been done for competition-colonization dy-
namics at a regional scale (e.g., Yu et al. 2001; Livingston
et al. 2012).

At local scales, population dynamics will be affected by
species’ abilities to colonize and then use patch resources.
We introduce a novel metric to assess the relative abilities
of species to colonize patches. Instead of estimating traits
directly affecting dispersal, this colonization index quan-
tifies relatively how much colonization ability contributes
to species growth (i.e., it encompasses species dynamics
as affected by patch colonization and excludes effects of
within-patches interactions). This index is relative, so it can-
not be compared across communities, but it produces re-
sults consistent with an estimate based on species physiol-
ogy. The colonization index may be useful in encompassing
This content downloaded from 23.235.32
All use subject to JSTOR
pling is restricted to individuals that have yet to disperse
from their natal patches (e.g., Kneidel 1983; Shorrocks and
Bingley 1994; Woodcock et al. 2002; Inouye 2005).
Our results are novel in revealing a dispersal-fecundity

trade-off that rigidly defines an entire guild of species shar-
ing an ephemeral patch resource and predicts local species
distributions. This trade-off likely facilitates coexistence
when resources are limiting. We suggest that the fluctuat-
ing availability of ephemeral patch resources is likely a crit-
ical driver of population dynamics in many related ephem-
eral patch communities. Because such communities are
common and unusually species rich, further development
toward a comprehensive mechanistic and predictive the-
ory of ephemeral patch dynamics will have broad applica-
bility for evolution and ecology.
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