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Abstract

The evolution of pesticide resistance is a widespread problem with potentially severe conse-

quences for global food security. We introduce the resevol R package, which simulates indi-

vidual-based models of pests with evolving genomes that produce complex, polygenic, and

covarying traits affecting pest life history and pesticide resistance. Simulations are modelled

on a spatially-explicit and highly customisable landscape in which crop and pesticide appli-

cation and rotation can vary, making the package a highly flexible tool for both general and

tactical models of pest management and resistance evolution. We present the key features

of the resevol package and demonstrate its use for a simple example simulating pests with

two covarying traits. The resevol R package is open source under GNU Public License. All

source code and documentation are available on GitHub.

Introduction

Insect resistance to pesticides is a wicked and widespread problem [1]. Predicting, identify-

ing, and ultimately delaying the evolution of insecticide resistance is therefore critical for

ensuring sustainable global food security [2, 3]. To manage pesticide resistance, various strat-

egies have been proposed to disrupt or weaken selection. These strategies often focus on

varying the location and timing of pesticide application, and therefore varying the strength

of selection for pesticide resistance, so that pest susceptibility to one or more pesticides is

maintained [4–8, 10]. Pesticide resistance management has mostly been associated with the

effect of single genes. In such cases, resistance alleles have binary effects on phenotype,

enabling resistant phenotypes to arise from genetic changes at single or a small number of

loci [11–13]. Nevertheless, resistance attributable to polygenic effects is also well-established

[14–19]. And the relevance of polygenic resistance is likely to further increase given a rising

interest in biological controls for sustainable crop protection [e.g., 18–20]. Developing strate-

gies to maximise the efficacy of these tools is critical, and such strategies should be well-

informed by predictions made from detailed, quantitative genetic models. Here we introduce
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the resevol R package as a tool for building individual-based models and simulating pest

management [21].

The resevol package applies individual-based modelling and a quantitative genetics

approach to simulate the evolution of a pest population on a changing landscape. Multiple

traits determine the overall fitness of any pest genotype. For example, while alleles conferring

resistance to a particular pesticide enhance fitness in the presence of that pesticide, they could

also impose reproductive fitness costs. Such trade-offs can be quantified by the genetic covari-

ance between traits. A focal goal of the resevol package is to model traits with a pre-specified,

but potentially evolving, genetic covariance structure. To achieve this goal, each individual has

a genome with L loci that underlie a set of T potentially evolving traits. Pleiotropic loci can

vary in their effects on the direction and magnitude of polygenic traits, causing population-

wide trait covariance to arise mechanistically from the underlying genetic architecture of indi-

viduals. To achieve this, two separate steps are necessary. First, an evolutionary algorithm is

used to find a network of internal nodes that map standard random normal loci values to

covarying traits. Values used to map loci to traits are incorporated into individual genomes.

Second, a population of asexual or sexual individuals is initialised and simulated on a spatially

explicit landscape separated into distinct units (e.g., farms). Land units can apply one of up to

10 pesticides, and one of up to 10 landscape types at a given time (for simplicity, here we inter-

pret landscape types to be crop types). Pesticides and crops rotate independently within farms

over time in a pre-specified way. The resevol package can thereby model complex and evolving

agricultural pest traits over realistic landscapes that undergo different pesticide use and crop

regimes.

Design and implementation

Covarying pest quantitative traits

The first step of simulation is building individual genomes. This step is separate because it is

computationally intensive, and genomes that are built might need to be inspected and stored.

High computation time is due to the mechanistic nature of how genomes and covarying traits

are modelled. Instead of imposing a trait covariance structure directly, an evolutionary algo-

rithm is used to find a network that maps standard random normal values (loci) to covarying

values (traits). This is useful because it allows genomes to model potentially evolving physio-

logical constraints, and trade-offs among traits, from the bottom up. Since multiple networks

can potentially map loci to the same trait covariance structure, it is possible to replicate evolu-

tion with different randomly generated genetic architectures. This approach to modelling indi-

vidual genomes and traits thereby increases the complexity of questions that can be addressed

for simulating evolution in agricultural pests.

Conceptually, the relationship between individual genotypes and traits is defined by a net-

work connecting loci to traits through a set of hidden internal nodes (Fig 1). Values for loci are

randomly drawn from a standard normal distribution, N ð0; 1Þ. Links between loci, internal

nodes, and traits, can take any real value and are represented by black arrows in Fig 1. Traits

can take any real value, and are calculated as the summed effects of all preceding nodes (i.e.,

the blue squares immediately to the left of the traits in Fig 1). Mathematically, loci are repre-

sented by a row vector of length L. Effects of loci on the first layer of internal nodes (black

arrows emanating from loci in Fig 1) are represented by an L × T matrix, and transitions

between internal nodes, and between the last set of internal nodes and the final traits, are
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represented by T × T matrices. For the example in Fig 1,
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Values mapping loci to traits become part of an individual’s genome, so the genome for the

individual represented by Fig 1 is stored in the model as shown below:

0.1, -0.1, -0.2, 0.4, 0.1, -1.2, -0.6, 0.2, 2.2, 1.3, -0.5,
-0.1, 0.0, 2.2, 0.9, 1.6, 0.8

Individuals with different loci can therefore have different covarying traits that are con-

strained by the network structure encoded in each genome. Individuals can be haploid (as in

Fig 1) or diploid (in which case, allele values are summed at homologous loci).

An evolutionary algorithm is used to find appropriate values that produce covarying traits

from loci (see S1 Text for details). Evolutionary algorithms are heuristic tools that can simulate

adaptive evolution to find solutions for a broad range of problems [22, 23]. In the resevol pack-

age, the mine_gmatrix function runs an evolutionary algorithm and requires the argument

gmatrix, which specifies the desired trait covariance matrix. The function initialises a popu-

lation of npsize separate, and potentially unique, networks (i.e., npsize copies of a net-

work like the one shown in Fig 1), and this population evolves until some maximum iteration

(max_gen) or minimum expected network stress (term_cri) is met. In a single iteration of

the algorithm, values mutate and crossover occurs between networks (i.e., some of the

npsize networks swap values with some probability). Next, trait covariances produced for

each network are estimated by initalising indivs individuals with loci sampled from a stan-

dard normal distribution. Network stress is calculated as the logged mean squared deviation

between estimated covariances and those in gmatrix. Tournament selection [22] is then

Fig 1. Example resevol network. Example network mapping loci (green circles) to traits (red diamonds) through an

intermediate set of hidden layers (blue squares) in the mine_gmatrix function. Individual genomes in the resevol R

package consist of standard random normal values for loci, real values for black arrows linking nodes, and real values for

traits. Values shown for loci and arrows are an example for illustration.

https://doi.org/10.1371/journal.pcbi.1011691.g001
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used to determine the networks for the next iteration of the algorithm. Networks with the low-

est estimated stress have the highest fitness, so these networks are disproportionately repre-

sented in the next iteration. Throughout the evolutionary algorithm, the lowest stress network

is saved and returned upon network termination. The robustness of this network’s stress to

sets of individuals with different loci values can be tested using the stress_test function.

An example run of mine_gmatrix with the same number of loci and internal nodes as

in Fig 1 is shown below for traits that have an intended covariance of -0.4:

trait_covs <- matrix(data = c(1, -0.4, -0.4, 1), nrow = 2, ncol = 2);

new_network <- mine_gmatrix(loci = 3, layers = 2, gmatrix = trait_covs,

max_gen = 1000, term_cri = -6.0,

prnt_out = FALSE);

The code above found a genome that produced the following expected trait covariances:

## [,1] [,2]

## [1,] 1.0008181 -0.3925799

## [2,] -0.3925799 1.0271340

The mean deviation between elements of the above matrix and the identity matrix provided

by trait_covs is 2.1176024 × 10−4. Lower values of term_cri and higher values of

max_gen will result in a lower stress, but this will require more computation time, especially

if the number of traits is high. Similarly, higher values of indivs will result in more accurate

estimations of true stress, but this also requires more computation time. Additional arguments

to mine_gmatrix can also be used to improve the performance of the evolutionary algo-

rithm (see S1 Text).

Simulating landscape-level pesticide resistance

The full output of mine_gmatrix is passed to the run_farm_sim function, which initia-

lises and simulates an evolving population of pests on a changing landscape for any natural

number of time steps (time_steps). In this section, we explain the landscape, pest ecology,

and evolving pest traits.

Landscape. Landscapes are spatially explicit and initialised in one of two ways. First, a

landscape can be built from the arguments xdim, ydim, and farms. These arguments spec-

ify the cell dimensions and number of farms on the landscape. Contiguous rectangular farms

of roughly equal size are generated on the landscape using a splitline algorithm. Second, a cus-

tom landscape can be input using the terrain argument, which takes a matrix with elements

that include integers 1 to farms. Each value defines a unique farm, but values do not need to

be contiguous. These ‘farms’ could even model non-farmland (e.g., water, roads), if pesticides

and crops on them are invisible to pests (see S2 Text), or they could more broadly be inter-

preted as heterogenous landscape properties across an arbitrary scale [e.g., 24]. This terrain
customisation therefore allows for a high degree of landscape detail, and offers the potential

for modelling real-world landscapes from raster images [e.g., 25]. Edge effects are set using the

land_edge argument. Edge options include “leaky” (pests disappear from the land-

scape), “reflect” (pests bounce off of the edge), “sticky” (pests stick to the edge), or

“torus” (pests that move off of one edge return on the opposite side of the landscape).

Each farm can hold one pesticide and one crop type in any time step. The crop_init
and pesticide_init arguments initialise one of crop_number crops and one of

pesticide_number pesticides for each farm, respectively (maximum of 10 each).
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Initialisation can be random for each farm with equal probability, or it can be set using a

vector of length farms in which vector elements define the initialised crop or pesticide

number. After initialisation, crops and pesticides rotate once every crop_rotation_time
and pesticide_rotation_time time steps, respectively. The arguments

crop_rotation_type and pesticide_rotation_type specify how crops and pes-

ticides are rotated, respectively. Each of these rotation type arguments can take either an inte-

ger value from 1–3, or a matrix. Integer values specify (1) no rotation, (2) random transition

from one type to another, or (3) cycling through each available crop or pesticide in numeric

order. Square matrices can be used to define the probability that a given crop or pesticide in

row i transitions to that in column j. Hence, any possible Markov chain can be used to model

transition between crop or pesticide types on farms, potentially integrating real crop use or

pesticide use patterns [26]. Upon rotation, crop and pesticide values are reset on each farm.

Values for crop_per_cell and pesticide_per_cell determine the quantity of

crops and pesticides initialised per cell upon crop or pesticide rotation, respectively. Between

crop rotations, crop values can increase each time step by a proportion or increment

crop_growth, which depends on crop_growth_type. These arguments can be used to

model crop growth over a season.

Pest ecology. Individual pests can be modelled to have several reproductive systems and life

histories. Pest reproductive system can be specified using the repro argument, which accepts

“asexual” (haploid), “sexual” (monoecious), and “biparental” (dioecious). For

“sexual” pests, the selfing argument specifies if self-fertilisation is (TRUE) or is not

(FALSE) allowed. At the start of a simulation, pests are initialised in a random location. Initia-

lised pests are of age zero if rand_age = FALSE or a random age from zero to max_age if

rand_age = TRUE. Following initialisation, a single time step proceeds with landscape change

(see above), pest aging and metabolism, feeding, pesticide consumption, movement, reproduc-

tion, mortality, and immigration (Fig 2). Feeding, pesticide consumption, movement, and repro-

duction all depend on pest age. Pests feed and consume pesticide from ages min_age_feed to

Fig 2. Overview of resevol events. Overview of simulated events in the resevol R package. Note that metabolism, feeding, pesticide consumption, movement, and

reproduction are all subject to a minimum and maximum pest age. Consequently, simulation order might not reflect the order of events from the perspective of a focal

pest (e.g., pests might move from ages 1–2, but only feed from ages 2–4). Crops and pesticides are also not necessarily rotated in each time step (see Landscape).

Statistics collected within a time step are printed to a CSV file.

https://doi.org/10.1371/journal.pcbi.1011691.g002
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max_age_feed, move from ages min_age_move to max_age_move, and reproduce

from ages min_age_reproduce to max_age_reproduce (all inclusive). Food

accumulated is lost during aging if baseline_metabolism > 0 and pest age is within

min_age_metabolism and max_age_metabolism. The option to set minimum and

maximum ages for events makes it possible to model pests with much different life histories [e.g.,

9].

In each time step, pests feed in a random order, consuming the crop on their landscape cell.

Each pest consumes an amount of crop as specified by the food_consume argument, which

takes a vector with as many elements as their are crops (i.e., if crop_number = 2, then

food_consume has two elements, the first and second defining consumption of crops 1 and

2, respectively). If crop amount on the landscape cell exceeds pest consumption ability, then

pests consume their maximum amount, and this amount is removed from the landscape cell.

If crop amount is less than pest consumption ability, then pests consume whatever crop is left

and crop amount is reduced to zero. Pesticide consumption works identically to crop con-

sumption, except that the amount of pesticide on a landscape cell is not decreased. Hence,

each pest can potentially feed and be affected by the pesticide of their focal landscape cell. Pests

simply consume an amount of pesticide as specified by the pesticide_consume argu-

ment, which also takes a vector with as many elements as their are pesticides. Pesticide con-

sumption affects pest survival and reproduction using pesticide_tolerated_surv
and pesticide_tolerated_repr arguments.

After interacting with their landscape cell, pests can move. Each pest visits a number of cells

during movement, as is specified by the parameter movement_bouts. Individual movement

bouts occur in a random order across pests. During a movement bout, a pest can travel to any

cell within a value defined by movement_distance from their current location, which could

include their current location (i.e., moving zero distance). Upon arrival to a cell, a pest can feed if

they are of an appropriate feeding age and feed_while_moving = TRUE. The pest also

consumes pesticide if they are of the appropriate age and pesticide_while_moving =
TRUE. Having pests feed and consume pesticide in a random order while moving among land-

scape cells can model a population competing for food and encountering pesticides on a shorter

time scale than an individual time step.

After all pests finish moving, pests reproduce. Offspring production is possible for asexual,

monoecious, or female pests. Pest expected offspring number is defined by a fixed parameter if

reproduction_type = “lambda”, or is calculated from the amount of food consumed

if reproduction_type = “food_based”. The former requires specifying

lambda_value, which becomes the rate parameter for sampling offspring number from a

Poisson distribution. The latter requires specifying a real value for food_needed_repr,

which is the amount of food needed to produce one offspring. For food-based reproduction,

the total amount of food consumed is divided by food_needed_repr, then floored to

determine offspring number. Sexual reproduction requires a mate of reproductive age that is

either monoecious or male, and within range of the reproducing focal pest (potential including

the focal pest, if selfing = TRUE). A potential mate is within range if it is within an integer

number of cells from the focal pest, as defined by mating_distance (e.g., if

mating_distance = 0, then mates must share a landscape cell). All available potential

mates sire offspring with equal probability, and reproducing pests are assumed to mate

multiply (i.e., paternity is a fair raffle for all offspring). If a carrying capacity at birth is set

(K_on_birth > 0) and total offspring number in the population exceeds this capacity,

then offspring are removed at random until they are within carrying capacity. A real value

immigration_rate specifies the rate parameter for Poisson random sampling of the num-

ber of immigrants added to the population at the end of a time step. Immigrants are initialised
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in the same way as pests are at the start of the simulation. Hence, any spatial structure or evolu-

tion that occurs during the simulation does not affect immigrant locations, genomes, or traits.

Pest evolution. Pest genomes evolve in a complex and highly mechanistic way. Offspring

inherit genome values from their parent(s) with the possibility for mutation and recombina-

tion; offspring traits are then calculated from their newly initialised genomes. For asexually

and sexually reproducing pests, genomes are haploid and diploid, respectively. Asexually

reproducing pests receive the full genomes of their parent, while sexually reproducing pests

receive half of their alleles from each parent. Each diploid parent contributes one half of their

genome, effectively modelling a genome with a single chromosome. Crossover occurs at each

position of the genome with a probability of crossover_pr. When a crossover event

occurs, alleles are swapped between the two chromosomes, so complete recombination is also

possible if crossover_pr = 0.5. For both haploids and diploids, each genome value then

mutates independently with a probability of mutation_pr, which can be set to any real

number from 0–1. If a genome value mutates, then a new value is randomly sampled from a

standard normal distribution. If mutation_type = 0, then this new value replaces the old

value, and if mutation_type = 1, then the new value is added to the old value. After

mutation, genome values are used to calculate trait values.

Evolution of the genetic architecture linking loci to traits can be constrained by disabling

mutation in genome values linking loci, internal nodes, and traits (i.e., ‘network values’ repre-

sented by arrows in Fig 1). While mutation at loci (green circles in Fig 1) is always possible as

long as mutation_pr > 0, the number of intermediary layers for which network values

can mutate is constrained by net_mu_layers. If net_mu_layers = 0, then no net-

work values can mutate, but higher integer values cause mutation to occur at network value

layers from loci to traits (if net_mu_dir = 1) or traits to loci (if net_mu_dir = 0). For

example, if net_mu_layers = 2 and net_mu_dir = 1, then the network values linking

loci to the first internal node, and the first internal node to the second, can mutate (i.e., first

two columns of arrows in 1, but not those linking the second internal node to traits). This

allows pest traits to evolve with varying degrees of constraint on the covariance between traits.

Low net_mu_layers values model strong genetic constraints, while high values model

high evolvability of trait covariances.

Finally, evolving and covarying traits can be used in place of fixed parameters described in pest

ecology. This is done by substituting “Tj” as an argument input in place of a numeric value,

where j represents the trait number. For example, the argument move_distance = “T1”
will make Trait 1 the movement distance for individuals. The argument food_consume = c
(“T2”, “T3”) will set Traits 2 and 3 to define the amount of food of types 1 and 2 that can be

consumed by a pest, respectively. Up to 10 of the following parameters can be replaced with evolv-

ing traits: move_distance, food_needed_surv, pesticide_tolerated_surv,

food_needed_repr, pesticide_tolerated_repr, mating_distance,

lambda_value, movement_bouts, metabolism, food_consume, and

pesticide_consume. Mean values of traits can be set using the argument trait_means,

which accepts a vector of the same length as the number of evolving traits such that indices corre-

spond to trait numbers. The resevol package can thereby simulate agricultural pests with complex

and co-evolving traits, and potentially evolving trait covariances, under a range of possible pest

life histories.

Simulation output

Simulation output is typically large, so output is printed in two CSV files, both of which are

created in the working directory. The first file “population_data.csv” prints population level

PLOS COMPUTATIONAL BIOLOGY resevol, An R package

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011691 December 4, 2023 7 / 12

https://doi.org/10.1371/journal.pcbi.1011691


data over time, including population size, mean age, sex ratio, mean food and pesticide con-

sumed of each type, mortality rate, and mean trait values. The second file “individuals.csv”

prints all information, including full genomes and traits (columns), for every individual (rows)

in the population. The printing of individual level data is disabled by default. It can be turned

on for all time steps by setting print_inds = TRUE, but this should be done with caution

because it can create extremely large files. Instead, individual level data can be printed for only

the final time step by setting print_last = TRUE. Output produced by run_farm_sim
is a list of two elements, which includes a vector of parameter values used in the simulation

and the final state of the landscape as an array.

Results

In resevol v0.3, the run_farm_sim function includes 68 arguments, which specify a wide

range of possible simulation conditions affecting landscape and pest characteristics. These

arguments are explained in the package documentation, and in S2 Text, which demonstrates

an advanced case study with a custom landscape and complex pest genomes and life history.

Here we focus on a simple simulation with asexually reproducing pests that have three loci and

two traits (Fig 1). We use the the genome generated in new_network from Section 1.1, in

which traits 1 and 2 have variances of 1.0008181 and 1.027134, respectively, with a covariance

of -0.3925799.

Traits 1 and 2 will define the realised rate of uptake of the two separate pesticides, so we

model a system in which there is a potential trade-off for pesticide susceptibility. We use a sim-

ple 64 × 64 cell landscape with nine farms. Each farm grows the same crop and uses one of two

randomly intialised pesticides, which are rotated every 16 time steps. Hence, we can conceptu-

alise 16 time steps as a single growing season.

In our example, each cell produces four crop units, all of which can potentially be con-

sumed. Pests consume up to one unit of crop on their landscape cell per time step. Pest survival

and reproduction is food-based, and pests need to consume one unit of crop by age two to sur-

vive and reproduce. Pests initialised at the start of the simulation are randomly assigned an age

from 0–4 with equal probability. Pests have a maximum age of four, and they feed in ages 0–2,

move up to two cells in ages 3–4, and reproduce in age four. Pests can uptake (i.e., ‘consume’)

pesticides in ages 0–2, and if they consume any pesticide, then they will die. In each time step,

a mean of 10 immigrants arrive. We simulate 160 time steps (10 growing seasons) using the

function below:

sim <- run_farm_sim(mine_output = new_network, repro = “asexual”,

pesticide_number = 2, pesticide_init = “random”,

pesticide_consume = c(“T1”, “T2”), farms = 9,

pesticide_rotation_time = 16,

pesticide_rotation_type = 3,

pesticide_tolerated_surv = 0,

pesticide_per_cell = 1,

crop_rotation_time = 16, crop_number = 1,

crop_per_cell = 4, food_consume = 1,

reproduction_type = “food_based”,

food_needed_surv = 1, food_needed_repr = 1,

max_age = 4, min_age_feed = 0, max_age_feed = 2,

min_age_move = 3, max_age_move = 4,

min_age_reproduce = 4, print_gens = FALSE,
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max_age_reproduce = 4, age_pesticide_threshold = 2,

rand_age = TRUE, move_distance = 2,

immigration_rate = 10, time_steps = 160,

print_last = TRUE, xdim = 64, ydim = 64,

trait_means = c(0.1, 0.1), land_edge = “torus”);

Any arguments to run_farm_sim not included above are set to default values. Output

files can be used to plot ecological and evolutionary dynamics of pests. Fig 3a shows the pest

population change both across and within seasons. Due to the specific parameter values cho-

sen, clear patterns reflecting pest cohorts emerge. At the start of a season when the most crop

is available, pests eat and abundance increases. As less crop remains in a season, pest abun-

dance decreases. Mean food consumed varies over the course of a season caused by the varying

frequency of pests in different life history stages (Fig 3c). In the first 50 time steps, there is

some consumption of pesticides 1 and 2 (Fig 3b), but both traits rapidly evolve to negative val-

ues making both pesticides ineffective (Fig 3d). In this case, the trade-off in pesticide consump-

tion is not strong enough to maintain susceptibility to either pesticide in the population. Fig 4

shows the location of pests on the landscape in the last time of the simulation (left panel), and

how different pesticides are currently being applied on the landscape (right panel). Because the

number of crops and pesticides, the number and nature of traits, and the size of pest genomes

all vary depending on simulation parameters, no plotting functions are introduced in the

Fig 3. Example resevol population dynamics. Agricultural pest ecological and evolutionary dynamics over 160 time steps from an individual-based simulation using

the resevol R package. Panels show (a) pesticide abundance change, (b) mean realised amount of pesticides 1 and 2 uptaken per pest, (c) mean food consumed per pest,

and (d) mean value of evolving traits 1 and 2 underlying pest uptake over time. Note that only pests with positive values for Traits 1 or 2 can uptake Pesticide 1 or 2,

respectively. Pests with negative trait values will be unaffected by corresponding pesticides (i.e., pesticide consumption is a threshold trait), hence the difference between

realised pesticide consumption (b) and the traits underlying it (d). White and grey vertical stripes indicate seasons of a single crop and pesticide application.

https://doi.org/10.1371/journal.pcbi.1011691.g003
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resevol package. Instead, methods and code for producing plots such as those in Figs 3 and 4

are explained in S2 Text.

Availability and future directions

Insecticide resistance to pesticides is a widespread problem that affects global food security [3,

27, 28]. Many models have been developed to investigate the evolution of resistance under dif-

ferent ecological and evolutionary conditions [e.g., 4, 5, 7–10, 17, 29, 30]. The resevol R pack-

age makes it possible to rapidly develop and simulate myriad individual-based models of

resistance evolution. It also introduces a novel approach to modelling complex pest genetic

architecture, using an evolutionary algorithm to generate haploid or diploid loci that map to

pest traits with pre-specified covariances (Fig 1; S1 Text). Agricultural landscapes and pest life

histories are highly customisable, allowing targetted models that can simulate specific real-

world case studies (S2 Text). The breadth of possible models that can be simulated with resevol

also makes it a useful tool for developing theory on pest management, and even more generally

on the evolution and ecology of individuals with complex traits on a heterogeneous landscape.

Supporting information

S1 Text. The evolutionary algorithm. The evolutionary algorithm of the resevol R package,

including key data structures used, a general overview of the evolutionary algorithm, and

details concerning haploid and diploid individuals.

(PDF)

S2 Text. Advanced techniques. Advanced techniques for using the resevol R package, includ-

ing initialising pest genomes and running simulations.

(PDF)

Fig 4. Pest spatial distributions in resevol simulation. Locations of pests (black) across a landscape that includes nine farms (coloured blocks)

in the last time step of a simulation using the resevol R package (left panel). The right panel shows which farms apply pesticide 1 (dark grey) and

2 (light grey).

https://doi.org/10.1371/journal.pcbi.1011691.g004
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