
resevol: an R package for spatially explicit models of pesticide
resistance given evolving pest genomes2

The evolutionary algorithm (Supporting Information 1)

A. Bradley Duthie1 3, Rosie Mangan1, Chintamani Rose McKeon1,
Matthew C. Tinsley1, and Luc F. Bussière2

4

[1] Biological and Environmental Sciences, University of Stirling, Stirling, UK [2]
alexander.duthie@stir.ac.uk, Biological and Environmental Sciences 3A149 University of6

Stirling Stirling, FK9 4LA, UK

1 Introduction8

The resevol package models individuals with complex genomes that can include any number of haploid or
diploid loci and any number of traits with an arbitrary pre-specified covariance structure. It does this by10

using a complex network mapping a path from the allele values at each loci to the covarying trait values of
individuals.12

The objective of the evolutionary algorithm in resevol is to find a set of network values that produce traits
(red diamonds above) with the pre-specified covariance structure given allele values (green circles above)14

that are sampled from a standard normal distribution (i.e., mean of zero and standard deviation of one).
Conceptually, the problem is simple; we need to find values for the black arrows above that produce traits that16

covary in the way that we want them to covary (within some acceptable margin of error). The mine_gmatrix
function uses an evolutionary algorithm for identifying sets of values that work. An evolutionary algorithm18

is an algorithm that works especially well for I know it when I see it problems [1]. Luke [2] explains the idea
behind these algorithms in more detail:20

They’re algorithms used to find answers to problems when you have very little to help you: you
don’t know beforehand what the optimal solution looks like, you don’t know how to go about22

finding it in a principled way, you have very little heuristic information to go on, and brute-force
search is out of the question because the space is too large. But if you’re given a candidate24

solution to your problem, you can test it and assess how good it is. That is, you know a good
one when you see it.26

In the mine_gmatrix function of the resevol package, an evolving population of networks like that in Figure
A above is initialised. Parent networks produce offspring networks with some recombination and mutation,28

and offspring networks are selected based on how close their trait covariance matrix is to the pre-specified
matrix input into the function. The algorithm is inspired by a similar algorithm within the GMSE R package30

[3].

2 Key data structures used32

In the code, the arrows in the above Figure A are represented by a set of matrices that map loci values to
trait values. There are 12 loci in Figure A, and 4 nodes in each hidden layer (blue squares). Arrow values34

1

mailto:alexander.duthie@stir.ac.uk
https://confoobio.github.io/gmse/index.html

RESEVOL, AN R PACKAGE

Hidden layers

Lo
ci

Tr
ai

ts

Figure A: Network mapping loci to traits through an intermediate set of hidden layers in the mine_gmatrix
function

2

RESEVOL, AN R PACKAGE

between loci and the first hidden layer can then be represented by a matrix with 12 rows and 4 columns
(i.e., row 1 holds a value for each of 4 arrows that point to the 4 hidden layer nodes). Note that the values36

below are initialised randomly, which is how they are initialised in the evolutionary algorithm.

arrows_1_dat <- rnorm(n = 4 * 12, mean = 0, sd = 0.1);
arrows_1_mat <- matrix(data = arrows_1_dat, nrow = 12, ncol = 4);
print(arrows_1_mat);

[,1] [,2] [,3] [,4]38

[1,] -0.073159580 0.05481848 0.06834789 0.08499769
[2,] -0.170123722 0.01169089 -0.19336091 0.0408670740

[3,] 0.030305135 0.02099087 0.19130552 0.02857465
[4,] 0.139509342 0.07717964 -0.01786193 -0.1675077242

[5,] -0.038593252 0.07624607 -0.23839583 -0.05194704
[6,] -0.002750393 0.06964490 0.06286583 0.0212583944

[7,] 0.078187448 0.10372404 0.03257329 -0.03156401
[8,] 0.021704064 -0.01604113 0.11648730 -0.1559187246

[9,] 0.084530082 -0.13162543 0.10172081 -0.04742356
[10,] 0.042950233 0.09974630 -0.07158570 -0.0245154848

[11,] 0.174947456 0.02719538 -0.02349986 0.14069853
[12,] 0.004199217 -0.07261790 -0.05818111 -0.1721364150

We can initialise 12 allele values, one for each locus.

loci <- rnorm(n = 12, mean = 0, sd = 1);

To then get the value of the first column of four hidden layer nodes (i.e., the first column of blue squares in52

Figure A), we can use matrix multiplication.

print(loci %*% arrows_1_mat);

[,1] [,2] [,3] [,4]54

[1,] 0.1229049 -0.4318209 0.6762696 0.2842672

We can likewise use a 4 by 4 square matrix to represent the values of the arrows from the first column of56

four hidden layer nodes to the second column of hidden layer nodes.

arrows_2_dat <- rnorm(n = 4 * 4, mean = 0, sd = 0.1);
arrows_2_mat <- matrix(data = arrows_2_dat, nrow = 4, ncol = 4);
print(arrows_2_mat);

[,1] [,2] [,3] [,4]58

[1,] 0.09933931 0.04531904 0.20751673 0.004996529
[2,] -0.04946498 -0.10837721 -0.05502555 0.13645806260

[3,] -0.14849893 -0.08823426 -0.20269841 0.009934804
[4,] 0.22614430 0.18535160 0.05833250 -0.00903674862

We can then use matrix multiplication to map the 12 allele values to the values of the second column of
hidden layer nodes.64

3

RESEVOL, AN R PACKAGE

print(loci %*% arrows_1_mat %*% arrows_2_mat);

[,1] [,2] [,3] [,4]
[1,] -0.002570604 0.0453887 -0.07123074 -0.0541615866

This pattern can continue, with 4 by 4 square matrices representing the value of arrows between columns of
hidden layer nodes, and between the last hidden layer column and traits (note that the number of hidden layer68

columns can be any natural number, but the number of nodes within a column always equals the number of
traits). In the actual evolutionary algorithm code, all of these square matrices are themselves held in a large70

3D array. But the idea is the same; a vector of allele values is multiplied by multiple matrices until a set of
trait values is produced. If multiple vectors of random standard normal allele values are generated, then the72

traits that they produce from all of this matrix multiplication can be made to covary in some pre-specified
way using the evolutionary algorithm.74

3 General overview of the evolutionary algorithm

The evolutionary algorithm first initialises a population of networks, with each network having a unique76

set of values (i.e., black arrows in Figure A, represented in the code by matrices explained in the previous
selction). In each iteration of the evolutionary algorithm, with some probability, networks crossover their78

values with another randomly selected network. Individual values in each network then mutate with some
probability. The fitness of each network is then calculated by comparing its trait covariances with those80

of a pre-specified covariance matrix. A tournament is then used to select the highest fitness networks, and
those selected networks replace the old to comprise the new population. Iterations continue until either a82

maximum number of iterations is reached or a network is found that produces trait covariances sufficiently
close to the pre-specified covariance matrix. Figure B below provides a general overview of the evolutionary84

algorithm.

Initialisation Crossover Mutation
Fitness

evaluation

Tournament

selection
Replacement

No
Termination?

Individual

network Yes

Figure B: Conceptual overview of the evolutionary algorithm used in the resevol package.

The steps listed in the box above are explained in more detail below with reference to the arguments applied86

in the mine_gmatrix function that calls it.

3.1 Initialisation88

At the start of the evolutionary algorithm, a population of npsize networks is initialised. Each individual
network in this population is represented by one matrix and one three dimensional array (see an explanation90

of the data structures above). All the elements of networks are initialised with a random sample from a
normal distribution with a mean of 0 and a standard deviation of sd_ini.92

4

https://github.com/bradduthie/resevol/blob/master/src/mine_gmatrix.c

3.2 Crossover RESEVOL, AN R PACKAGE

3.2 Crossover

An iteration of the evolutionary algorithm begins with a crossover between the values of networks in the94

population. For each network in the population, a crossover event will occur in the values linking loci to the
first hidden layer (see Figure A) with a probability of pr_cross. And a second independent crossover event96

will occur in the values linking the first hidden layer to traits, also with a probability of pr_cross. The
reason that these two crossover events are independent is due to the different dimensions of the underlying98

arrays (see key data structures used above). A matrix with loci rows and a number of columns that matches
the number of traits holds the values linking loci to the first hidden layer. A three dimensional array with100

row and column numbers matching trait number, and a depth matching the number of hidden layers (e.g.,
3 in Figure A) holds the remaining values linking the first hidden layer to trait values.102

If a crossover event occurs for a focal network, then a contiguous set of values is defined and swapped with
another randomly selected network in the population. Dimensions of the contiguous set are selected from a104

random uniform distribution. For example, given that the network in Figure A would be represented by a
three dimensional array with 4 rows, 4 columns, and 3 layers, three random integers from 1-4, 1-4, and 1-3106

would be sampled twice, respectively, with replacement. If the values selected were 1, 3, and 2 in the first
sample, then 3, 3, and 1 in the second sample, then all values from rows 1-3, column 3, and layers 1-2 would108

be swapped between networks. Conceptually, this is the equivalent of drawing a square around set of arrows
in Figure A and swapping the arrow values with the values of another network.110

3.3 Mutation

After crossover occurs, all network values mutate independently at a fixed probability of mu_pr. If a mutation112

event occurs, then a new value is randomly sampled from a normal distribution with a mean of 0 and a
standard deviation of mu_sd. This value is then added to the existing value in the network.114

3.4 Fitness evaluation

After mutation, the fitness of each network in the population is evaluated. For each network, a set of indivs116

loci vectors is created, which represents the allele values of indivs potential individuals in a simulated
population. Elements of each loci vector are randomly sampled from a standard normal distribution. For118

example, in the network of Figure A where loci = 12, loci * indivs standard normal values would be
generated in total. After these indivs loci vectors are initialised, values in each vector are mapped to traits120

using the focal network, thereby producing indivs sets of traits from the focal network. These indivs sets
of traits are then used to calculate the among trait covariances and build a trait covariance matrix for the122

network. This trait covariance matrix is then compared to the pre-specified gmatrix by calculating stress
as the mean squared deviation between matrix elements. Lower stress values correspond to higher network124

fitness.

The stress of each network in the population of npsize networks is calculated using the above algorithm.126

Selection of the next generation of npsize networks is then done using a tournament.

3.5 Tournament selection128

After fitness evaluation, networks in the population compete in a series of tournaments to determine the
composition of the next generation of npsize networks. Tournament selection is a flexible way to choose130

the fittest subset of the population [1]. It starts by randomly selecting sampleK networks with replacement
to form the competitors in a tournament (note that sampleK is constrained to be less than or equal to132

npsize). Of those sampleK networks, the chooseK networks with the highest fitness (i.e., lowest stress) are
set aside to be placed in the new population (note that chooseK must be less than or equal to sampleK).134

More tournaments continue until a total of npsize new networks are set aside to form the new generation
of networks.136

5

3.6 Termination RESEVOL, AN R PACKAGE

3.6 Termination

Throughout the evolutionary algorithm, the network with the lowest overall stress (from any generation)138

is retained. The evolutionary algorithm terminates if either the logged stress of the mean network is less
than or equal to term_cri, or if max_gen generations of the evolutionary algorithm have occurred. The140

mean network stress is used instead of the lowest overall stress because error in randomly generated loci
can result in unusually low stress values due to chance, which might not be replicated with a new random142

sample of loci. When the evolutionary algorithm terminates, only the network with the lowest overall stress
is returned.144

4 Haploid and diploid individuals

The evolutionary algorithm does not distinguish between haploid and diploid genomes Instead, haploid and146

diploid individuals in resevol simulations are build differently from the mined network described above.
For haploid individuals, network values are placed in individual genomes exactly as they are returned by148

mine_gmatrix. Hence, standard normal allele values at loci from haploid genomes will map to predictably
covarying traits. For diploid individuals, all network values returned by mine_gmatrix are divided by 2, and150

two copies of each value are then placed in each individual to model diploid genomes. Allele values are then
randomly sampled from a normal distribution with a mean of 0 and a standard deviation of 1 / sqrt(2),152

so that summed allele values at homologous loci will have a standard normal distribution. As such, effects of
each loci are determined by the sum of homologous alleles. Similarly, homologous network values mapping154

allele values to traits are also summed, thereby producing the expected trait covariance structure.

Literature Cited156

1. Hamblin S. On the practical usage of genetic algorithms in ecology and evolution. Methods in Ecology
and Evolution. 2013;4: 184–194. doi:10.1111/2041-210X.12000

158

2. Luke S. Essentials of metaheuristics. second. Lulu; 2013.
160

3. Duthie AB, Cusack JJ, Jones IL, Nilsen EB, Pozo RA, Rakotonarivo OS, et al. GMSE: an R package
for generalised management strategy evaluation. Methods in Ecology and Evolution. 2018;9: 2396–
2401. doi:10.1101/221432

162

6

https://doi.org/10.1111/2041-210X.12000
https://doi.org/10.1101/221432

	Introduction
	Key data structures used
	General overview of the evolutionary algorithm
	Initialisation
	Crossover
	Mutation
	Fitness evaluation
	Tournament selection
	Termination

	Haploid and diploid individuals
	Literature Cited

