
resevol: an R package for spatially explicit models of pesticide
resistance given evolving pest genomes2

Advanced techniques (Supporting Information 2)

A. Bradley Duthie1 3, Rosie Mangan1, Chintamani Rose McKeon1,
Matthew C. Tinsley1, and Luc F. Bussière2

4

[1] Biological and Environmental Sciences, University of Stirling, Stirling, UK [2]
alexander.duthie@stir.ac.uk, Biological and Environmental Sciences 3A149 University of6

Stirling Stirling, FK9 4LA, UK

1 Introduction8

Here we focus on advanced techniques for simulating pest ecological and evolutionary dynamics using the
resevol R package. In the main text, we provided a simple example of individual-based simulations to10

demonstrate how to get started. This document focuses instead on demonstrating the more advanced options
of the package and showcasing what it can do. The case study will focus on crop and pesticide rotation on a12

complex, customised landscape that includes farmland, grassland, forest, and water. The pest species will be
sexually reproducing and obligately biparental, and its life history will include an egg and larval stage during14

which it feeds on crops and consumes pesticide, and a stage during which it moves, mates, and reproduces.
The pest species will include a total of four evolving traits that affect the consumption of two crops and two16

pesticides. The objective of simulations will be to test how pest population size changes and traits evolve
given different pesticide rotation regimes. Below, we explain how to model this system in detail, including18

all of the necessary code for reproducing the example within the text.

2 Initialising pest genomes20

First, we need to use the mine_gmatrix function to initialise pest genomes. In our example, individuals will
have four covarying traits resulting from 12 loci. There will be 4 internal nodes that map loci values to traits22

(see the Evolutionary Algorithm explanation for details). The trait covariance structure will be defined as
below.24

library("resevol");
gmt <- matrix(data = c(1.0, -0.5, 0.2, 0.2, -0.5, 1.0, 0.2, 0.2, 0.2,

0.2, 0.4, -0.6, 0.2, 0.2, -0.6, 0.4), nrow = 4);
print(gmt);

[,1] [,2] [,3] [,4]
[1,] 1.0 -0.5 0.2 0.226

[2,] -0.5 1.0 0.2 0.2
[3,] 0.2 0.2 0.4 -0.628

[4,] 0.2 0.2 -0.6 0.4

1

mailto:alexander.duthie@stir.ac.uk

RESEVOL, AN R PACKAGE

Rows and columns 1 and 2 will represent traits underlying the consumption rate of crops 1 and 2, respectively.30

Hence, the variation in crop consumption rate is 1 for both crops, while the covariance in consumption rate
is -0.5, meaning that there is a trade-off between pest ability to consume crop 1 versus crop 2. Rows and32

columns 3 and 4 will represent traits underlying the consumption rate of pesticides 1 and 2, respectively.
Hence, the variation in pesticide consumption rate is 0.4 for both pesticides, which is lower than what it is34

for crops. There is a trade-off in the consumption rate of pesticide 1 versus pesticide 2, which is reflected
in the covariance of -0.6 in the above matrix. Finally, there is a positive covariance of 0.2 between all crop36

and all pesticide consumption rates. What this means is that pests that consume crops quickly also tend to
consume pesticides quickly, causing a potential trade-off between the beneficial effects of feeding ability and38

the negative effects of pesticides. We can now use the mine_gmatrix function to find a network mapping
loci to traits that satisfies the above trait covariance structure. The options used below in mine_gmatrix40

arguments will lead to a computationally intense (and therefore time-consuming) search, particularly due to
the large number of networks in the population (npsize = 12000), high number of individuals used to test42

network stress (indivs = 2000), high number of hidden nodes (layers = 4), strict stress criteria (term_cri
= -8), and high maximum generation number (max_gen = 5400).44

set.seed(2022);
mg <- mine_gmatrix(gmatrix = gmt, loci = 12, indivs = 2000, npsize = 12000,

max_gen = 5400, sampleK = 1200, chooseK = 6, layers = 4,
mu_pr = 0.2, pr_cross = 0.2, mu_sd = 0.004,
term_cri = -8);

To save time, a genome mg produced from the code above has been saved into the resevol R package
as advanced_techniques_eg.rda, which we can load. Note that running mine_gmatrix can be a time-46

consuming process, and will often require multiple attempts to get the above parameter settings to produce
a desired network. See Hamblin [1] for useful advice on parameter value selection for the evolutionary48

algorithm. Time-sensitive parameter values specific to the resevol package include indivs and layers.
Increasing values for both of these parameters can increase run time.50

load(system.file("advanced_eg.rda", package = "resevol"));

The contents of each list element of mg are not important for our purposes, but an explanation is available
in the package documentation. What is important is the sixth list element, which holds the estimated52

covariance structure found by the evolutionary algorithm.

[,1] [,2] [,3] [,4]54

[1,] 1.0677123 -0.4510309 0.1225596 0.1277905
[2,] -0.4510309 1.0449414 0.1251180 0.121736856

[3,] 0.1225596 0.1251180 0.5014936 -0.3992066
[4,] 0.1277905 0.1217368 -0.3992066 0.501139858

We can compare the above covariance structure with the one that we specified in gmt. The stress of mg
(i.e., mean squared deviation of mg elements from gmt elements) is 0.0099034. But this is only based on60

one population of indivs = 2000 initialised pests. We can use the stress_test function to see what the
distribution of stress is over 1000 such initialised populations of 2000 individuals (Figure A).62

sim_stress <- stress_test(mine_output = mg, indivs = 2000, reps = 1000);
hist(x = sim_stress, main = "", breaks = 20, xlab = "Initialised stress");

If we are satisfied with the distribution of stress, then we can accept mg as the genome for our initialised
pests. The whole contents of mg will then be passed on to the run_farm_sim function, which initialises pests64

using the genome values in mg before running simulations. Before doing any of this, because we want to run
a simulation on a customised landscape, we will explain how such a landscape can be generated and inserted66

into the simulation.

2

RESEVOL, AN R PACKAGE

Initialised stress

F
re

qu
en

cy

−4.65 −4.60 −4.55 −4.50 −4.45 −4.40

0
20

40
60

80
10

0

Figure A: Distribution of stress for initialised pest trait covariances in the resevol R package. Stress values
are computed using genome values produced by the mine_gmatrix function for 1000 replicate populations
of initialised pest loci values.

3

RESEVOL, AN R PACKAGE

3 Landscape68

Default settings for running simulations with the run_farm_sim function create a spatially explicitly land-
scape with dimensions specified by arguments xdim and ydim, and a number of farms specified by farms.70

These arguments can be over-ridden with a matrix that defines landscape cell identities, which is set in the
terrain argument. A very simple custom 12 by 12 landscape might look something like the below.72

simple_terrain <- matrix(data = 0, nrow = 12, ncol = 12)
simple_terrain[1:2, 1:3] <- 1;
simple_terrain[3:7, 1:2] <- 1;
simple_terrain[8:12, 1:2] <- 2;
simple_terrain[1:2, 6:9] <- 3;
simple_terrain[3:6, 7:9] <- 3;
simple_terrain[1:6, 10:12] <- 4;
simple_terrain[10:12, 7] <- 5;
simple_terrain[7:12, 8:12] <- 5;
simple_terrain[3:12, 3:4] <- 6;
simple_terrain[7:9, 5] <- 6;
simple_terrain[1:2, 4:5] <- 7;
simple_terrain[3:6, 5:6] <- 7;
simple_terrain[7:9, 6:7] <- 7;
simple_terrain[10:12, 5:6] <- 7;
print(simple_terrain)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
[1,] 1 1 1 7 7 3 3 3 3 4 4 474

[2,] 1 1 1 7 7 3 3 3 3 4 4 4
[3,] 1 1 6 6 7 7 3 3 3 4 4 476

[4,] 1 1 6 6 7 7 3 3 3 4 4 4
[5,] 1 1 6 6 7 7 3 3 3 4 4 478

[6,] 1 1 6 6 7 7 3 3 3 4 4 4
[7,] 1 1 6 6 6 7 7 5 5 5 5 580

[8,] 2 2 6 6 6 7 7 5 5 5 5 5
[9,] 2 2 6 6 6 7 7 5 5 5 5 582

[10,] 2 2 6 6 7 7 5 5 5 5 5 5
[11,] 2 2 6 6 7 7 5 5 5 5 5 584

[12,] 2 2 6 6 7 7 5 5 5 5 5 5

What is important is that the matrix elements only include natural numbers from 1 to the total number of86

farms (not skipping any numbers). In the case of the above, numbers 1-7 all appear on the landscape, so
the matrix will work. We can visualise the matrix more clearly by looking at it as an image (Figure B).88

par(mar = c(0, 0, 0, 0));
image(t(simple_terrain), xaxt = "n", yaxt = "n", useRaster = TRUE);

In Figure B, each colour represents a unique farm, and colours correspond to the numbers within the
matrix simple_terrain (note that the orientation differs between the matrix and the image). This is a90

simple example, but matrices can be made large to model highly complex landscapes. Additionally, not
every colour needs to represent a ‘farm’ per se. We can represent other types of terrain such as grassland,92

woodland, or water with its own natural number. The trick in this case is to have each of these other types
of terrain grow a crop and use a pesticide that has no effect on pests (i.e., cannot be consumed). If terrain94

types have no effect on pests, then they can effectively model land that is not used for farming. We can

4

RESEVOL, AN R PACKAGE

Figure B: Image representing a simple landscape for the resevol package created from a 12 by 12 matrix of
natural numbers from 1-7.

5

RESEVOL, AN R PACKAGE

show this using the matrix land_eg, which is also included in the resevol package. The dimensions of the96

landscape modelled in land_eg are 128 by 128 cells, and the landscape includes 14 farms (1-14), grassland
(15), forest (16), and water (17). The code below produces an image that shows how these terrain types are98

distributed over the landscape (Figure C).

land_file <- system.file("landscape_eg.csv", package = "resevol");
land_dat <- read.csv(file = land_file, header = FALSE);
land_eg <- t(as.matrix(land_dat));
farm_cols <- c("#f4eadc", "#6a4b20", "#cea05f", "#e1c59d", "#a97833", "#cea05f",

"#f2e6d6", "#6a4b20", "#cc9c59", "#dfc197", "#a27331", "#f0e3d0",
"#5d421c", "#ca9852");

land_cols <- c(farm_cols, "#00ab41", "#234F1E", "#2832C2");
par(mar = c(0, 0, 0, 0));
image(land_eg, xaxt = "n", yaxt = "n", col = land_cols);
points(x = 0.2, y = 0.05, cex = 9, pch = 20);
text(x = 0.2, y = 0.05, labels = "1", cex = 2, col = "red");
points(x = 0.4, y = 0.1, cex = 9, pch = 20);
text(x = 0.4, y = 0.1, labels = "2", cex = 2, col = "red");
points(x = 0.4, y = 0.1, cex = 9, pch = 20);
text(x = 0.4, y = 0.1, labels = "2", cex = 2, col = "red");
points(x = 0.25, y = 0.27, cex = 9, pch = 20);
text(x = 0.25, y = 0.27, labels = "3", cex = 2, col = "red");
points(x = 0.20, y = 0.43, cex = 9, pch = 20);
text(x = 0.20, y = 0.43, labels = "4", cex = 2, col = "red");
points(x = 0.42, y = 0.48, cex = 9, pch = 20);
text(x = 0.42, y = 0.48, labels = "5", cex = 2, col = "red");
points(x = 0.28, y = 0.58, cex = 9, pch = 20);
text(x = 0.28, y = 0.58, labels = "6", cex = 2, col = "red");
points(x = 0.1, y = 0.8, cex = 9, pch = 20);
text(x = 0.1, y = 0.8, labels = "7", cex = 2, col = "red");
points(x = 0.7, y = 0.05, cex = 9, pch = 20);
text(x = 0.7, y = 0.05, labels = "8", cex = 2, col = "red");
points(x = 0.9, y = 0.2, cex = 9, pch = 20);
text(x = 0.9, y = 0.2, labels = "9", cex = 2, col = "red");
points(x = 0.85, y = 0.4, cex = 9, pch = 20);
text(x = 0.85, y = 0.4, labels = "10", cex = 2, col = "red");
points(x = 0.92, y = 0.58, cex = 9, pch = 20);
text(x = 0.92, y = 0.58, labels = "11", cex = 2, col = "red");
points(x = 0.88, y = 0.76, cex = 9, pch = 20);
text(x = 0.88, y = 0.76, labels = "12", cex = 2, col = "red");
points(x = 0.86, y = 0.93, cex = 9, pch = 20);
text(x = 0.86, y = 0.93, labels = "13", cex = 2, col = "red");
points(x = 0.52, y = 0.91, cex = 9, pch = 20);
text(x = 0.52, y = 0.91, labels = "14", cex = 2, col = "red");
points(x = 0.05, y = 0.59, cex = 7, pch = 20);
text(x = 0.05, y = 0.59, labels = "15", cex = 1.7, col = "white");
points(x = 0.46, y = 0.28, cex = 7, pch = 20);
text(x = 0.46, y = 0.28, labels = "16", cex = 1.7, col = "white");
points(x = 0.62, y = 0.36, cex = 7, pch = 20);
text(x = 0.62, y = 0.36, labels = "17", cex = 1.7, col = "white");

This land_eg matrix can be used in run_farm_sim by setting terrain = land_eg. The dimensions of the100

landscape will then automatically be set to xdim = 128 and ydim = 128, and the number of farms will
be set to farms = 17. To ensure that we do not have pests consuming crops or pesticides from non-farm102

6

RESEVOL, AN R PACKAGE

1
22

3

4
5

6

7

8

9

10

11

12

1314

15

16

17

Figure C: A complex landscape to be used in the resevol R package, including 14 separate farms, grassland,
forest, and water. The image is represented in the code by a matrix in which element numbers correspond
to different terrain colours (e.g., elements corresponding to water are numbered 17).

7

RESEVOL, AN R PACKAGE

areas, we just need to set pest consumption options accordingly. Next, we describe how this can be done by
defining how crops and pesticides will be initialised and rotated on the landscape.104

4 Running simulations

We will simulate the same population twice using the mg pest genome and land_eg landscape described above106

under two different pesticide regimes, simulation 1 and simulation 2. In both regimes, the same pesticide is
applied to farms that occupy the same side of the river (e.g., farms 1-7 apply pesticide 1 and farms 8-14 apply108

pesticide 2). In simulation 1, the pesticide is never rotated. In simulation 2, farms rotate between pesticides
1 and 2 every 9 time steps. First, we will demonstrate how to customise crop and pesticide rotation for110

simulation 1, then run the simulation, and finally show the output. Second, we will repeat the process for
simulation 2 and demonstrate how comparisons can be made between the two simulations.112

4.1 Simulation 1

First, we focus on how to set custom pesticide and crop rotation for simulations. Next, we run simulation 1114

with the run_farm_sim function. Finally, we demonstrate how to interpret output for simulation 1.

4.1.1 Custom pesticide and crop rotation116

The run_farm_sim arguments crop_init and crop_rotation_type specify starting crops for each farm
and how crops rotate, respectively. Equivalent arguments pesticide_init and pesticide_rotation_type118

similarly specify starting pesticides and pesticide rotations, respectively. We can set each argument to
a number as a short-hand way of specifying these parameters. For example, the default initialisation120

crop_init = "random" simply causes each farm to start the simulation with a random crop. Setting values
of crop_rotation_type to 1, 2, or 3 causes no rotation, random rotation, or cycling through crop numbers122

in sequence, respectively. But we can generate more specific initialisation and rotation types using a vector
to initialise crops and pesticides, and using a matrix to define rotation. For initialisation, vector elements124

correspond to farm number and element values correspond to the crop initialised. For our example with 17
unique zones of terrain on the landscape, we can define initialised crop choice as follows.126

initial_crop <- c(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3);

That is, the first 7 farms on one side of the river all start off growing crop 1. Farms 8-14 all start off growing
crop 2. Crop 3 is used as a dummy for grassland (15), forest (16), and water (17). We explain how to ensure128

that 15-17 is never used by pests below. Meanwhile, we can specify a matrix for the crop rotation regime.
This regime will cause farmers to rotate between crops 1 and 2, but zones 15-17 to always use ‘crop’ 3.130

rotate_crop <- matrix(data = 0, nrow = 3, ncol = 3);
rotate_crop[1, 2] <- 1;
rotate_crop[2, 1] <- 1;
rotate_crop[3, 3] <- 1;
print(rotate_crop);

[,1] [,2] [,3]
[1,] 0 1 0132

[2,] 1 0 0
[3,] 0 0 1134

8

4.1 Simulation 1 RESEVOL, AN R PACKAGE

In the above rotate_crop, matrix elements define the probability of transitioning from one crop type (rows)
to another crop type (columns). Hence, in rotate_crop, farms that have been applying crop 1 will always136

switch to crop 2, and vice versa. Landscape zones applying crop 3 will never transition to any other crop,
nor will any other crop transition to type 3. We can set initial pesticides and pesticide rotation in the same138

way. First we set initial pesticide use.

initial_pesticide <- c(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3);

Next, we define pesticide rotation. Recall that in simulation 1, pesticides will not rotate and farms will140

maintain the same pesticide type over all time steps.

rotate_pesticide <- matrix(data = 0, nrow = 3, ncol = 3);
rotate_pesticide[1, 1] <- 1;
rotate_pesticide[2, 2] <- 1;
rotate_pesticide[3, 3] <- 1;
print(rotate_pesticide);

[,1] [,2] [,3]142

[1,] 1 0 0
[2,] 0 1 0144

[3,] 0 0 1

We therefore have set farms to always use one of two crops and one of two pesticides. Everything that is146

not a farm will use crop 3 and pesticide 3. Next, we bring everything together and show how pests, the
landscape, and the rotation of crops and pesticides can be used in run_farm_sim for simulations.148

4.1.2 Running simulation 1

The code below runs simulation 1 using the run_farm_sim function.150

set.seed(2022);
sim1 <- run_farm_sim(mine_output = mg,

terrain = land_eg,
crop_init = initial_crop,
crop_rotation_type = rotate_crop,
pesticide_init = initial_pesticide,
pesticide_rotation_type = rotate_pesticide,
food_consume = c("T1", "T2", 0),
pesticide_consume = c("T3", "T4", 0),
crop_number = 3,
pesticide_number = 3,
trait_means = c(2, 2, 0.0, 0.0),
max_age = 6,
min_age_feed = 0,
max_age_feed = 2,
min_age_move = 3,
max_age_move = 6,
min_age_metabolism = 3,
max_age_metabolism = 6,
metabolism = 0.5,
food_needed_surv = 1,
reproduction_type = "food_based",

9

4.1 Simulation 1 RESEVOL, AN R PACKAGE

food_needed_repr = 2,
N = 1000,
repro = "biparental",
mating_distance = 4,
rand_age = TRUE,
pesticide_tolerated_surv = 2,
movement_bouts = 4,
move_distance = 2,
crop_per_cell = 10,
crop_sd = 0,
pesticide_per_cell = 1,
pesticide_sd = 0,
crop_rotation_time = 18,
pesticide_rotation_time = 9,
time_steps = 240,
pesticide_start = 81,
immigration_rate = 100,
land_edge = "reflect",
mutation_pr = 0.01,
crossover_pr = 0.01,
print_gens = TRUE,
print_last = TRUE);

Immediately below the first six arguments, we have the arguments food_consume, pesticide_consume,
crop_number, and pesticide_number. The way that these arguments are set ensures that pests only152

interact with farm cells. The rate of food consumption for the first two crops is defined by the values of
traits 1 and 2 and set as "T1" and "T2", respectively. The rate of consumption for crop 3 is set to 0, meaning154

that no food can be eaten on these cells. Similarly, the rate at which pesticides 1 and 2 are consumed is
defined by the values of traits 3 and 4, which are set as "T3" and "T4", respectively. The rate of consumption156

for pesticide 3 is set to 0 so that pesticide is not consumed on these cells.

We next set the mean values of traits at the start of the simulation with the argument trait_means.158

Mean consumption rate of both crops is set to 2, while mean pesticide consumption rate is set to 0
(note, negative consumption rate values are possible, but are realised as no consumption). Pests live160

up to 6 time steps (max_age = 6), and are defined to start feeding upon birth (min_age_feed = 0) and
stop at age 2 (max_age_feed = 2). At age 3, pests start to move (min_age_move = 3) and metabolise162

food (min_age_metabolism = 3) at a rate of metabolism = 0.5. The metabolism argument defines the
amount of consumed food lost during the time step, which can affect pests when food consumed affects164

survival (food_needed_surv) and reproduction (reproduction_type). By setting reproduction_type =
"food_based" and food_needed_surv = 1, we model a system in which pests burn the food consumed from166

ages 0-2 at a rate of 0.5 units per time step after age 3, then die when their reserves drop below 1. By setting
food_needed_repr = 2, we ensure that only pests that have 2 or more units of food stored can reproduce.168

Note that if we desired, we could also set food_needed_surv, food_needed_repr, and metabolism to be
evolving traits.170

We initialise the population with N = 1000 obligately biparental (repro = "biparental") pests, and
can find a mate within mating_distance = 4 cells of their own cell. All pests are initialised at a172

random age (rand_age = TRUE). Pests will die if they consume more than 2 total units of pesticide
(pesticide_tolerated_surv = 2). In each time step, pests that are able to move will do so an average174

of 4 times on the landscape (movement_bouts = 4), moving up to 2 cells in any direction during each
bout (movement_distance = 2). Recall that since pests consume food and pesticide only between176

ages 0-2, then start moving at age 3, no food or pesticide consumption occurs during movement (if
applicable, it could be turned on with feed_while_moving = TRUE and pesticide_while_moving =178

TRUE). Each farm cell produces 10 units of crops (crop_per_cell = 10 and crop_sd = 0) and 1 unit

10

4.1 Simulation 1 RESEVOL, AN R PACKAGE

of pesticide (pesticide_per_cell = 1 and pesticide_sd = 0). Crops are rotated every 18 time steps180

(crop_rotation_time = 18), and pesticides are set to rotate every 9 time steps (pesticide_rotation_time
= 9), but this pesticide rotation has no effect in simulation 1 because the same pesticide is applied upon182

rotation (as defined by rotate_pesticide). This can be conceptualised as modelling an 18 time step
growing season in which pesticides are re-applied at the start and halfway point of a season. Note that it is184

critical to consider that crops are therefore refreshed every 18 time steps, not every time step. Hence, any
food consumed by a pest will be lost from a cell and not replenished until crop rotation occurs. Because186

more than one pest can occupy a single cell, crop loss can occur quickly depending on how parameter values
are set.188

Lastly, we set the number of time steps to time_steps = 240, and we set pesticide_start = 81, which
means that pesticides are not applied at all until after a burn-in of 81 time steps. In each time step, an190

average of 100 immigrants enter the population (immigration_rate = 100). We set the landscape edge
type to land_edge = "reflect" to model a reflective edge in which pests that attempt to leave one side192

of the landscape bounce back toward the centre. Pest genome mutation rate and crossover rate at a locus
are set to mutation_pr = 0.01 and crossover_pr = 0.01, respectively. We print out the dynamics of the194

evolving population over time, and all of the individual data from the last time step, to two separate CSV
files (individual data are not included in the package due to its size). All arguments of run_farm_sim not196

mentioned are set to default parameter values, which can be found in the package documentation.

4.1.3 Simulation 1 output198

When running the function run_farm_sim, the population size of the pest will be printed in the R console
in each time step. This is primarily because simulations can take a long time, and printing makes it possible200

to estimate how much time is remaining. Printing to the console can be turned off by setting print_gens
= FALSE. Once the simulation has finished, two CSV files will be created in the working directory. The file202

“population_data.csv” saves population data over time, and “individuals.csv” saves every characteristic of
all individuals in the last time step (including full individual genomes). Here we show how to work with the204

most relevant information from these two files to make inferences about pest population and evolutionary
dynamics.206

We will start with the population level output that is printed to “population_data.csv”, which has been
renamed “population_data_sim1.csv”.208

population_data_file_sim1 <- system.file("population_data_sim1.csv",
package = "resevol");

population_data_sim1 <- read.csv(file = population_data_file_sim1);

This file includes population-level parameters of population size and mean pest age, sex, food consumed,
pesticide consumed, mortality rate, and trait values reported for each time step. If get_f_coef = TRUE in210

run_farm_sim, then mean inbreeding coefficients of pests are also reported.

print(head(population_data_sim1));

time_step population_size mean_age mean_sex mean_food_consumed212

1 0 1000 3.982000 2.499000 0.396658
2 1 301 1.813953 2.498339 2.590001214

3 2 415 2.166265 2.474699 2.708252
4 3 540 2.412963 2.488889 2.830218216

5 4 756 2.488095 2.469577 2.755487
6 5 964 2.452282 2.484440 2.819527218

mean_pesticide_consumed mortality_rate mean_food1_consumed
1 0 0.837000 0.179506220

11

4.1 Simulation 1 RESEVOL, AN R PACKAGE

2 0 0.205980 0.578690
3 0 0.233735 0.417990222

4 0 0.218519 0.398647
5 0 0.279101 0.411980224

6 0 0.312241 0.405805
mean_food2_consumed mean_food3_consumed mean_pesticide1_consumed226

1 0.217152 0 0
2 0.738026 0 0228

3 0.526348 0 0
4 0.521056 0 0230

5 0.496357 0 0
6 0.468015 0 0232

mean_pesticide2_consumed mean_pesticide3_consumed trait1_mean_value
1 0 0 1.998091234

2 0 0 1.962117
3 0 0 2.021925236

4 0 0 2.020423
5 0 0 2.073448238

6 0 0 2.083852
trait2_mean_value trait3_mean_value trait4_mean_value mean_f240

1 2.014113 0.001834 0.003205 0
2 2.140079 0.041814 0.000534 0242

3 2.211915 0.067218 0.029188 0
4 2.279216 0.034372 0.089154 0244

5 2.313421 0.099480 0.059904 0
6 2.367128 0.105447 0.080354 0246

Because the structure of the data frame above depends on the number of crops, pesticides, and evolving
traits simulated, there are no pre-set functions in the resevol package for plotting. Here we include code for248

plotting population size, consumption of the two food types, two pesticides types, and evolving trait means.
Note that because crop and pesticide 3 are dummy variables (not consumed at all), we do not need to plot250

these. Figure D shows how population density of pests changes over time.

mbox <- function(x0, x1, y0, y1){
xx <- seq(from=x0, to=x1, length.out = 100);
yy <- seq(from=y0, to=y1, length.out = 100);
xd <- c(rep(x0, 100), xx, rep(x1,100), rev(xx));
yd <- c(yy, rep(y1,100), rev(yy), rep(y0, 100));
return(list(x=xd, y=yd));

}
season <- seq(from = 0, to = 240, by = 18);
blocks <- length(season) - 1;
plot(x = population_data_sim1[["time_step"]], type = "n",

y = population_data_sim1[["population_size"]], cex.lab = 1.25,
cex.axis = 1.25, ylab = "Pest population abundance", xlab = "Time step",
ylim = c(0, max(population_data_sim1[["population_size"]])));

for(i in 1:blocks){
rbox <- mbox(x0 = season[i], x1 = season[i + 1], y0 = -1000, y1 = 21000);
if(i %% 2 == 0){

polygon(x = rbox$x, y = rbox$y, lwd = 3, border = NA,
col = "grey90");

}
}
points(x = population_data_sim1[["time_step"]],

12

4.1 Simulation 1 RESEVOL, AN R PACKAGE

y = population_data_sim1[["population_size"]], type = "l", lwd = 2);
abline(v = 81, lwd = 3, col = "red");
box();

0 50 100 150 200

0
50

00
10

00
0

15
00

0
20

00
0

Time step

P
es

t p
op

ul
at

io
n

ab
un

da
nc

e

Figure D: Pest abundance over time in a population simulated using the resevol R package in which pesticides
are not rotated over time. The grey shaded regions show individual crop seasons; pesticides are applied at
the start and midpoint of each seasons, beginning at the time step indicated by the red vertical line.

Figure E shows how the mean consumption of different foods and pesticides changes over time.252

par(mfrow = c(2, 2), mar = c(1, 4, 1, 1));
plot(x = population_data_sim1[["time_step"]], type = "n", ylim = c(0, 0.8),

y = population_data_sim1[["mean_food1_consumed"]], cex.lab = 1.25,
ylab = "Mean crop 1 consumed", xlab = "Time step", xaxt = "n");

13

4.1 Simulation 1 RESEVOL, AN R PACKAGE

for(i in 1:blocks){
rbox <- mbox(x0 = season[i], x1 = season[i + 1], y0 = -1000, y1 = 6000);
if(i %% 2 == 0){

polygon(x = rbox$x, y = rbox$y, lwd = 3, border = NA,
col = "grey90");

}
}
points(x = population_data_sim1[["time_step"]],

y = population_data_sim1[["mean_food1_consumed"]], type = "l", lwd = 2);
text(x = 5, y = 0.79, labels = "a", cex = 2);
box();
par(mar = c(1, 4, 1, 1));
plot(x = population_data_sim1[["time_step"]], type = "n", ylim = c(0, 0.8),

y = population_data_sim1[["mean_food2_consumed"]], cex.lab = 1.25 ,
ylab = "Mean crop 2 consumed", xlab = "Time step", xaxt = "n");

for(i in 1:blocks){
rbox <- mbox(x0 = season[i], x1 = season[i + 1], y0 = -1000, y1 = 6000);
if(i %% 2 == 0){

polygon(x = rbox$x, y = rbox$y, lwd = 3, border = NA,
col = "grey90");

}
}
points(x = population_data_sim1[["time_step"]],

y = population_data_sim1[["mean_food2_consumed"]], type = "l", lwd = 2);
text(x = 5, y = 0.79, labels = "b", cex = 2);
box();
par(mar = c(4, 4, 1, 1));
plot(x = population_data_sim1[["time_step"]], type = "n", ylim = c(0, 0.8),

y = population_data_sim1[["mean_pesticide1_consumed"]], cex.lab = 1.25,
ylab = "Mean pesticide 1 consumed", xlab = "Time step");

for(i in 1:blocks){
rbox <- mbox(x0 = season[i], x1 = season[i + 1], y0 = -1000, y1 = 6000);
if(i %% 2 == 0){

polygon(x = rbox$x, y = rbox$y, lwd = 3, border = NA,
col = "grey90");

}
}
points(x = population_data_sim1[["time_step"]],

y = population_data_sim1[["mean_pesticide1_consumed"]], type = "l", lwd = 2);
box();
text(x = 5, y = 0.78, labels = "c", cex = 2);
par(mar = c(4, 4, 1, 1));
plot(x = population_data_sim1[["time_step"]], type = "n", ylim = c(0, 0.8),

y = population_data_sim1[["mean_pesticide2_consumed"]], cex.lab = 1.25,
ylab = "Mean pesticide 2 consumed", xlab = "Time step");

for(i in 1:blocks){
rbox <- mbox(x0 = season[i], x1 = season[i + 1], y0 = -1000, y1 = 6000);
if(i %% 2 == 0){

polygon(x = rbox$x, y = rbox$y, lwd = 3, border = NA,
col = "grey90");

}
}
points(x = population_data_sim1[["time_step"]],

14

4.1 Simulation 1 RESEVOL, AN R PACKAGE

y = population_data_sim1[["mean_pesticide2_consumed"]], type = "l",
lwd = 2);

box();
text(x = 5, y = 0.78, labels = "d", cex = 2);

Similarly, we can visualise how all four traits evolve over time (Figure F).

par(mfrow = c(2, 2), mar = c(1, 4, 1, 1));
plot(x = population_data_sim1[["time_step"]], type = "n", ylim = c(2, 3.6),

y = population_data_sim1[["trait1_mean_value"]], cex.lab = 1.25,
ylab = "Mean crop 1 consumption trait", xlab = "Time step", xaxt = "n");

for(i in 1:blocks){
rbox <- mbox(x0 = season[i], x1 = season[i + 1], y0 = -1000, y1 = 6000);
if(i %% 2 == 0){

polygon(x = rbox$x, y = rbox$y, lwd = 3, border = NA,
col = "grey90");

}
}
points(x = population_data_sim1[["time_step"]],

y = population_data_sim1[["trait1_mean_value"]], type = "l", lwd = 2);
text(x = 5, y = 3.56, labels = "a", cex = 2);
box();
par(mar = c(1, 4, 1, 1));
plot(x = population_data_sim1[["time_step"]], type = "n", ylim = c(2, 3.6),

y = population_data_sim1[["trait2_mean_value"]], cex.lab = 1.25 ,
ylab = "Mean crop 2 consumption trait", xlab = "Time step", xaxt = "n");

for(i in 1:blocks){
rbox <- mbox(x0 = season[i], x1 = season[i + 1], y0 = -1000, y1 = 6000);
if(i %% 2 == 0){

polygon(x = rbox$x, y = rbox$y, lwd = 3, border = NA,
col = "grey90");

}
}
points(x = population_data_sim1[["time_step"]],

y = population_data_sim1[["trait2_mean_value"]], type = "l", lwd = 2);
text(x = 5, y = 3.56, labels = "b", cex = 2);
box();
par(mar = c(4, 4, 1, 1));
plot(x = population_data_sim1[["time_step"]], type = "n", ylim = c(-0.8, 1.4),

y = population_data_sim1[["trait3_mean_value"]], cex.lab = 1.25,
ylab = "Mean pesticide 1 consumption trait", xlab = "Time step");

for(i in 1:blocks){
rbox <- mbox(x0 = season[i], x1 = season[i + 1], y0 = -1000, y1 = 6000);
if(i %% 2 == 0){

polygon(x = rbox$x, y = rbox$y, lwd = 3, border = NA,
col = "grey90");

}
}
points(x = population_data_sim1[["time_step"]],

y = population_data_sim1[["trait3_mean_value"]], type = "l", lwd = 2);
box();
text(x = 5, y = 1.34, labels = "c", cex = 2);
par(mar = c(4, 4, 1, 1));

15

4.1 Simulation 1 RESEVOL, AN R PACKAGE

0.
0

0.
2

0.
4

0.
6

0.
8

Time step

M
ea

n
cr

op
 1

 c
on

su
m

ed

a

0.
0

0.
2

0.
4

0.
6

0.
8

Time step

M
ea

n
cr

op
 2

 c
on

su
m

ed

b

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

Time step

M
ea

n
pe

st
ic

id
e

1
co

ns
um

ed

c

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

Time step

M
ea

n
pe

st
ic

id
e

2
co

ns
um

ed

d

Figure E: Pest consumption over time in a population simulated using the resevol R package in which
pesticides are not rotated over time. Panels show (a) mean amount of crop 1 and (b) crop 2 consumed per
pest, and (c) mean amount of pesticide 1 and (d) pesticide 2 consumed per pest. Grey shaded regions show
individual crop seasons; pesticides are applied at the start and midpoint of each seasons, beginning at the
time step 100.

16

4.1 Simulation 1 RESEVOL, AN R PACKAGE

plot(x = population_data_sim1[["time_step"]], type = "n", ylim = c(-0.8, 1.4),
y = population_data_sim1[["trait4_mean_value"]], cex.lab = 1.25,
ylab = "Mean pesticide 2 consumption trait", xlab = "Time step");

for(i in 1:blocks){
rbox <- mbox(x0 = season[i], x1 = season[i + 1], y0 = -1000, y1 = 6000);
if(i %% 2 == 0){

polygon(x = rbox$x, y = rbox$y, lwd = 3, border = NA,
col = "grey90");

}
}
points(x = population_data_sim1[["time_step"]],

y = population_data_sim1[["trait4_mean_value"]], type = "l", lwd = 2);
box();
text(x = 5, y = 1.34, labels = "d", cex = 2);

Next, we look at the file that includes the complete information for all individuals in the last time step254

of the simulation. Using this data set, we can examine the distribution of pests on the landscape, and
the realised covariance of evolving pest traits. In this output “last_time_step.csv”, traits always begin256

in column 102, meaning that individual trait values for traits 1, 2, 3, and 4 will be in columns 102, 103,
104, and 105, respectively. In this example, the CSV output file “last_time_step.csv” has been renamed258

“last_time_step_sim1.csv”. To minimise the size of the resevol R package, all data columns except pest
locations and traits have been removed from example outputs, so pest locations are in columns 1-2 (not 3-4)260

and traits are in columns 3-6 (not 102-105). The last time step output is read into R below.

last_time_step_file_sim1 <- system.file("last_time_step_sim1.csv",
package = "resevol");

pop_last_time_step_sim1 <- read.csv(file = last_time_step_file_sim1);

We can plot the distribution over the landscape using the code below. The code identifies the x-locations262

and y-locations of each pest i in pop_last_time_step_sim1, and these landscape cells are replaced with
the number 18. A new land colour for black #000000 is then included, and the map is reproduced as an264

image in R. Figure G shows the same map as above, but with the numbering removed to make the pests
(black points) more visible.266

par(mar = c(0, 0, 0, 0));
landscape <- land_eg;
for(i in 1:dim(pop_last_time_step_sim1)[1]){

xloc <- pop_last_time_step_sim1[i, 1] + 1;
yloc <- pop_last_time_step_sim1[i, 2] + 1;
landscape[xloc, yloc] <- 18;

}
land_cols <- c(land_cols, "#000000");
image(landscape, xaxt = "n", yaxt = "n", col = land_cols);

head(pop_last_time_step_sim1);

V3 V4 V102 V103 V104 V105
1 33 13 2.395557 3.485652 -1.413820 2.185108268

2 94 109 4.325184 1.408115 1.212488 -0.505254
3 108 58 4.583821 3.336972 2.907757 -1.297925270

4 108 61 3.385105 2.619580 1.399597 -0.577378
5 2 47 3.713334 3.623724 -0.853502 2.222031272

6 87 63 4.034968 3.601765 1.555337 -0.060638

17

4.1 Simulation 1 RESEVOL, AN R PACKAGE

2.
0

2.
5

3.
0

3.
5

Time step

M
ea

n
cr

op
 1

 c
on

su
m

pt
io

n
tr

ai
t

a

2.
0

2.
5

3.
0

3.
5

Time step

M
ea

n
cr

op
 2

 c
on

su
m

pt
io

n
tr

ai
t

b

0 50 100 150 200

−
0.

5
0.

0
0.

5
1.

0

Time step

M
ea

n
pe

st
ic

id
e

1
co

ns
um

pt
io

n
tr

ai
t c

0 50 100 150 200

−
0.

5
0.

0
0.

5
1.

0

Time step

M
ea

n
pe

st
ic

id
e

2
co

ns
um

pt
io

n
tr

ai
t

d

Figure F: Mean values of pest traits T1 (crop 1 consumption rate), T2 (crop 2 consumption rate), T3
(pesticide 1 consumption rate), and T4 (pesticide 2 consumption rate) in a population simulated using the
resevol R package in which pesticides are not rotated over time. Grey shaded regions show individual crop
seasons; pesticides are applied at the start and midpoint of each seasons, beginning at the time step 100.

18

4.1 Simulation 1 RESEVOL, AN R PACKAGE

Figure G: A complex landscape for simulating the ecology of pests and the evolution of pesticide resistance
on farmland in the resevol R package. Terrain includes farms (brown colours), grassland (light green), forest
(dark green), and water (blue). Black points show the locations of individual pests after 240 time steps for
a simulation in which pesticides are not rotated over time.

19

4.2 Simulation 2 RESEVOL, AN R PACKAGE

print(land_cols);

[1] "#f4eadc" "#6a4b20" "#cea05f" "#e1c59d" "#a97833" "#cea05f" "#f2e6d6"274

[8] "#6a4b20" "#cc9c59" "#dfc197" "#a27331" "#f0e3d0" "#5d421c" "#ca9852"
[15] "#00ab41" "#234F1E" "#2832C2" "#000000"276

The spatial pattern of pests over the landscape can be useful for visualising pest population dynamics. In
the case of the above, pest density is higher on some farms (e.g., 1, 8, 9, 10, and 15) than others (e.g., 3,278

12, and 13), and this pest density could be interpreted with respect to individual farm crop and pesticide
rotation regimes. Hence, for the four evolving traits, a covariance matrix of pest traits can be calculated at280

the end of the simulation.

end_trait_covs <- cov(pop_last_time_step_sim1[,3:6]);
print(end_trait_covs);

V102 V103 V104 V105282

V102 1.1223660 -0.1485266 0.2470207 0.1506317
V103 -0.1485266 1.3351424 -0.0714354 0.5612672284

V104 0.2470207 -0.0714354 2.9213039 -2.8459986
V105 0.1506317 0.5612672 -2.8459986 3.1352726286

The above covariance matrix shows that after 240 time steps, the covariance between consumption of pesti-
cides 1 and 2 has decreased from -0.3992066 to -2.8459986, suggesting that the trade-off for resisting pesticides288

had become stronger. In contrast, the covariance between consumption of crops 1 and 2 has increased from
-0.4510309 to -0.1485266, suggesting that the trade-off in ability to consume crops of each type has weakened.290

4.2 Simulation 2

We now repeat the simulations such that pesticide application is rotated every 9 time steps. To make this292

rotation, we only need to redefine rotate_pesticide.

rotate_pesticide <- matrix(data = 0, nrow = 3, ncol = 3);
rotate_pesticide[1, 2] <- 1;
rotate_pesticide[2, 1] <- 1;
rotate_pesticide[3, 3] <- 1;

Now, every 9 time steps, crops using pesticide 1 will switch to pesticide 2, and crops using pesticide 2 will294

switch to pesticide 1. We can re-run the same simulation with the same genome (mg), landscape (land_eg),
and simulation seed (2022) used in simulation 1. Hence, the only thing changing between the two simulations296

is the pesticide rotation.

set.seed(2022);
sim2 <- run_farm_sim(mine_output = mg,

terrain = land_eg,
crop_init = initial_crop,
crop_rotation_type = rotate_crop,
pesticide_init = initial_pesticide,
pesticide_rotation_type = rotate_pesticide,
food_consume = c("T1", "T2", 0),
pesticide_consume = c("T3", "T4", 0),

20

4.2 Simulation 2 RESEVOL, AN R PACKAGE

crop_number = 3,
pesticide_number = 3,
trait_means = c(2, 2, 0.0, 0.0),
max_age = 6,
min_age_feed = 0,
max_age_feed = 2,
min_age_move = 3,
max_age_move = 6,
min_age_metabolism = 3,
max_age_metabolism = 6,
metabolism = 0.5,
food_needed_surv = 1,
reproduction_type = "food_based",
food_needed_repr = 2,
N = 1000,
repro = "biparental",
mating_distance = 4,
rand_age = TRUE,
pesticide_tolerated_surv = 2,
movement_bouts = 4,
move_distance = 2,
crop_per_cell = 10,
crop_sd = 0,
pesticide_per_cell = 1,
pesticide_sd = 0,
crop_rotation_time = 18,
pesticide_rotation_time = 9,
time_steps = 240,
pesticide_start = 81,
immigration_rate = 100,
land_edge = "reflect",
mutation_pr = 0.01,
crossover_pr = 0.01,
print_gens = TRUE,
print_last = TRUE);

We can look at the same outputs for simulation 2 that we did for simulation 1. We first read in the output298

for simulation 2.

population_data_file_sim2 <- system.file("population_data_sim2.csv",
package = "resevol");

population_data_sim2 <- read.csv(file = population_data_file_sim2);

To avoid needless repetition, the code for plots will not be included for simulation 2. Figure H shows300

population abundance over time for simulation 2.

After pesticides are applied at time step 81, pest population size decreases and does not recover. Figure I302

shows crop and pesticide consumption over time.

Figure J shows how pest traits evolve over time when pesticides are rotated.304

We can observe the spatial distribution of pests on the landscape in the final time step (Figure K).

Finally, we can examine the trait covariances in the final time step below.306

21

4.2 Simulation 2 RESEVOL, AN R PACKAGE

0 50 100 150 200

0
50

00
10

00
0

15
00

0
20

00
0

Time step

P
es

t p
op

ul
at

io
n

ab
un

da
nc

e

Figure H: Pest abundance over time in a population simulated using the resevol R package in which pesticides
rotates every 9 time steps. The grey shaded regions show individual crop seasons; pesticides are applied at
the start and midpoint of each seasons, beginning at the time step indicated by the red vertical line.

22

4.2 Simulation 2 RESEVOL, AN R PACKAGE

0.
0

0.
2

0.
4

0.
6

0.
8

Time step

M
ea

n
cr

op
 1

 c
on

su
m

ed

a

0.
0

0.
2

0.
4

0.
6

0.
8

Time step

M
ea

n
cr

op
 2

 c
on

su
m

ed

b

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

Time step

M
ea

n
pe

st
ic

id
e

1
co

ns
um

ed

c

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

Time step

M
ea

n
pe

st
ic

id
e

2
co

ns
um

ed

d

Figure I: Pest consumption over time in a population simulated using the resevol R package in which
pesticides rotate every 9 time steps. Panels show (a) mean amount of crop 1 and (b) crop 2 consumed per
pest, and (c) mean amount of pesticide 1 and (d) pesticide 2 consumed per pest. Grey shaded regions show
individual crop seasons; pesticides are applied at the start and midpoint of each seasons, beginning at the
time step 100.

23

4.2 Simulation 2 RESEVOL, AN R PACKAGE

2.
0

2.
5

3.
0

3.
5

Time step

M
ea

n
cr

op
 1

 c
on

su
m

pt
io

n
tr

ai
t

a

2.
0

2.
5

3.
0

3.
5

Time step

M
ea

n
cr

op
 2

 c
on

su
m

pt
io

n
tr

ai
t

b

0 50 100 150 200

−
0.

5
0.

0
0.

5
1.

0

Time step

M
ea

n
pe

st
ic

id
e

1
co

ns
um

pt
io

n
tr

ai
t c

0 50 100 150 200

−
0.

5
0.

0
0.

5
1.

0

Time step

M
ea

n
pe

st
ic

id
e

2
co

ns
um

pt
io

n
tr

ai
t

d

Figure J: Mean values of pest traits T1 (crop 1 consumption rate), T2 (crop 2 consumption rate), T3
(pesticide 1 consumption rate), and T4 (pesticide 2 consumption rate) in a population simulated using the
resevol R package in which pesticides rotate every 9 time steps. Grey shaded regions show individual crop
seasons; pesticides are applied at the start and midpoint of each seasons, beginning at the time step 100.

24

4.2 Simulation 2 RESEVOL, AN R PACKAGE

Figure K: A complex landscape for simulating the ecology of pests and the evolution of pesticide resistance
on farmland in the resevol R package. Terrain includes farms (brown colours), grassland (light green), forest
(dark green), and water (blue). Black points show the locations of individual pests after 240 time steps for
a simulation in which pesticides are not rotated over time.

25

RESEVOL, AN R PACKAGE

V102 V103 V104 V105
V102 1.5769217 -0.53211838 0.0665547 0.35835679308

V103 -0.5321184 1.29401550 0.2987174 0.01794992
V104 0.0665547 0.29871744 0.9629416 -0.81135108310

V105 0.3583568 0.01794992 -0.8113511 0.96416686

We can use the outputs above to contrast the population dynamics of pests under a regime that lacks312

(simulation 1) or does not lack (simulation 2) the rotation of pesticide types.

5 Conclusion314

From the output above, we can conclude that when farms rotate the pesticide that they apply between
pesticide 1 and pesticide 2, it has a substantial effect on pest density and evolution. In the absence of pesticide316

rotation, the pest population quickly recovers after pesticides are first applied (Figure D). Consequently,
pesticides have very little long-term effect on the amount of crops consumed (Figure Ea,b), and while there318

is an initial spike in the consumption of both pesticides (Figure Ec,d), this consumption quickly declines.
Despite the positive covariance between crop consumption and pesticide consumption, and the negative320

covariances between consumption of crop and pesticide types, these trade-offs appear to have only a modest
effect on reducing actual crop consumption and maintaining or increasing pesticide consumption (Figure322

F). Consequently, some farms experience high densities of pests that are resistant to the applied pesticides
(Figure G).324

In contrast, when pesticides are rotated every 9 time steps, the pest population density drops after the
onset of pesticide application and does not recover (Figure H). The amount of each crop consumed per pests326

also drops (Figure Ia, b), while the amount of pesticide 1 and 2 consumed is maintained at a much higher
rate than occurred in the absence of pesticide rotation (Figure Ic, d). Because selection against pesticide328

consumption was not consistent for a specific farm, and there is a trade-off between pest consumption of
pesticide 1 versus 2, local adaptation to a single pesticide did not occur (Figure J). Overall, farms therefore330

did not experience high densities of pests, and pest resistance to pesticide is well-managed (Figure K).

Trait covariance differences between simulations 1 and 2 also highlight the effect that pesticide rotation had332

on pesticide resistance evolution. When no pesticide rotation occurred, the trade-off between consumption
rate of pesticides 1 and 2 was reflected in a realised trait covariance of -2.8459986. But when pesticides334

were rotated, the realised covariance was instead -0.8113511. This means that in simulation 1, pests that
are highly resistant to pesticide 1 were not highly resistant to pesticide 2, and vice versa. In other words,336

the lack of pesticide rotation resulted in local adaptation, with some pests specialising on resistance to one
of the two pesticides. In simulation 2, pests maintained at least some resistance to both pesticides. Local338

adaptation was not possible because different pesticides were applied in sequence on any given farm.

This advanced example was not rigorous, but it illustrates how a rigorous simulation of pesticide resistance340

evolution could be designed with the resevol R package. To make robust predictions, multiple replicate
simulations would need to be run for the same set of simulation conditions (in this case, for simulation 1 and342

2) to account for stochastic effects in the model. For example, we might repeat the above initalisation of
pest genomes to obtain 20 genomes with similar covariance structures, then run simulation 1 and simulation344

2 20 times to get more robust predictions about pest population dynamics. We might also need to consider
a range of parameter values if some values are unknown or uncertain (e.g., pest movement or trait means).346

To develop theory, we could also contrast simulations with more fundamental differences. For example, we
might test how mating system affects pesticide resistance evolution by running the same set of simulations for348

repro = "asexual", repro = "sexual", and repro = "biparental". The resevol R package is therefore a
highly flexible and powerful tool for running complex models tailored to specific systems, and for developing350

theory on pest ecology, evolution, and management.

26

RESEVOL, AN R PACKAGE

Literature Cited352

1. Hamblin S. On the practical usage of genetic algorithms in ecology and evolution. Methods in Ecology
and Evolution. 2013;4: 184–194. doi:10.1111/2041-210X.12000

354

27

https://doi.org/10.1111/2041-210X.12000

	Introduction
	Initialising pest genomes
	Landscape
	Running simulations
	Simulation 1
	Custom pesticide and crop rotation
	Running simulation 1
	Simulation 1 output

	Simulation 2

	Conclusion
	Literature Cited

