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(Abstract) 

Mutualism is ubiquitous in nature, and nursery pollination mutualisms provide a system 

well suited to quantifying the benefits and costs of symbiotic interactions. In nursery 

pollination mutualisms, pollinators reproduce within the inflorescence they pollinate, 

with benefits and costs being measured in the numbers of pollinator offspring and seeds 

produced. This type of mutualism is also typically exploited by seed-consuming non-

pollinators that obtain resources from plants without providing pollination services. 

Theory predicts that the rate at which pollen-bearing “foundresses” visit a plant will 

strongly affect the plant's production of pollinator offspring, non-pollinator offspring, 

and seeds. Spatially aggregated plants are predicted to have high rates of foundress 

visitation, increasing pollinator and seed production, and decreasing non-pollinator 

production; very high foundress visitation may also decrease seed production indirectly 

through the production of pollinators. Working with a nursery mutualism comprised of 

the Sonoran Desert rock fig, Ficus petiolaris, and host-specific pollinating and non-

pollinating fig wasps, we use linear models to evaluate four hypotheses linking species 

interactions to benefits and costs: 1) foundress density increases with host-tree 

connectivity, 2) pollinator production increases with foundress density, and 3) non-

pollinator production and 4) seed production decrease with pollinator production. We 

also directly test how tree connectivity affects non-pollinator production. We find strong 

support for our four hypotheses, and we conclude that tree connectivity is a key driver 

of foundress visitation, thereby strongly affecting spatial distributions in the F. 

petiolaris community. We also find that foundress visitation decreases at the 

northernmost edge of the F. petiolaris range. Finally, we find species-specific effects of 

tree connectivity on non-pollinators to be strongly correlated with previously estimated 

non-pollinator dispersal abilities. We conclude that plant connectivity is highly 

important for predicting plant-pollinator-exploiter dynamics, and discuss the 

implications of our results for species coexistence and adaptation. 
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Mutualisms are defined by interactions between species that are reciprocally beneficial. 

Mutualisms are ubiquitous in nature (Bronstein 2001a) and underlie much of the 

world’s agricultural production and biodiversity (Tylianakis et al. 2008, Bascompte 

2009), so understanding their dynamics is of practical as well as ecological and 

evolutionary significance (Thompson 2005). In addition to conferring fitness benefits to 

symbionts, the ecology and evolution of mutualism includes diverse costs (Bronstein 

2001a). The costs and benefits involved in mutualistic interactions are often difficult to 

quantify (Bronstein 2001a). Much has been learned, however, from plants associated 

with species-specific pollinators whose larvae consume seeds within host fruits, because 

in such systems costs and benefits are easily measured in terms of the numbers of seeds 

and pollinators that plants produce (Bronstein 2001a). The fitness gain accrued by the 

production of seeds and pollinators is different for each mutualist. For mutualisms in 

which pollinators collect pollen in the natal host before dispersing to pollinate and lay 

eggs in new hosts, plants benefit from the production of both seeds and new pollinators, 

which represent plant female and male fitness, respectively, while pollinators do not 

directly benefit from the production of seeds. Because asymmetry in fitness interest is 

expected for all mutualisms (Afkhami et al. 2014), insights gained from studies of 

plants and their seed-eating pollinators are broadly applicable to mutualism more 

generally.  

 Empirical studies of plants with seed-eating pollinators, such as figs and 

their pollinating wasps (e.g. Weiblen 2002), observe that the number of pollinator 

offspring and seeds produced by plants within a population often vary greatly (e.g. 

Addicott 1986, Holland and Fleming 1999, Després et al. 2007). For example, in a study 

including 23 Florida strangling figs (Ficus aurea), Bronstein (2001a) found pollinator 

production within fig syconia (enclosed inflorescences) to range between 0-229, and 

seed production to range between 0-150. Such variation among figs within a population A
cc

ep
te

d
 A

rt
ic

le



‘This article is protected by copyright. All rights reserved.’ 

 

is common, with high variation in pollinator and seed production reported for species 

worldwide (e.g. Bronstein and Hossaert-McKey 1996, Cook and Power 1996, Wang et 

al. 2005, Cardona et al. 2013). To comprehensively understand mutualism, it is 

necessary to also understand the causes of this high variation in the distribution of 

mutualists, but such causes remain unclear for plants with seed-eating pollinators. 

 The rate at which seed-eating, pollen-bearing mutualists (hereafter 

``foundresses'') visit host plants is a key parameter that theory predicts will causally 

affect the production of pollinator offspring and seeds (Morris et al. 2003, Bronstein et 

al. 2003, Wilson et al. 2003, Duthie and Falcy 2013). Higher foundress visitation rates 

may lead to more effective pollination (e.g. Després et al. 2007), potentially increasing 

seed production. But increasingly high foundress visitation will also incur increased 

seed predation from pollinator larvae (e.g. Herre 1989,  Shapiro and Addicott 2003).  

Higher foundress visitation is therefore expected to increase total pollinator production 

on a plant. As pollinator (and therefore foundress) density increases further in a 

population, plant seed production decreases, resulting in lowered plant density and an 

eventual decrease in pollinator population growth that ultimately leads to stable 

populations or dampened oscillations of species abundances over time in ecological 

models (Morris et al. 2003, Wilson et al. 2003).  

 Given the density-dependent regulation predicted by ecological models, 

the high variation observed among plants in seed and pollinator production may suggest 

that density-dependent mechanisms are weak in regulating plant and seed-eating 

pollinator interactions (Addicott 1986). Alternatively, spatial variation in foundress 

visitation may lead to variation in pollinator and seed production with populations still 

regulated strongly by density-dependent mechanisms. In a spatially-explicit model of 

plants and seed-eating pollinators, Duthie and Falcy (2013) varied the aggregation of 

plants by varying plant habitat autocorrelation. Their model demonstrates that when the A
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spatial distribution of plants is aggregated and the dispersal of pollinators is limited, the 

mean number of foundress visits a plant receives will be strongly influenced by the 

plant's location. Where plants are closely aggregated, foundress visitation will increase 

thereby increasing pollinator production at the potential cost of seeds. In contrast, areas 

where plants are more spatially isolated will be visited less frequently by foundresses, 

which may decrease pollinator production but also decrease the probability of pollen 

transfer.  

 Mutualisms are almost universally exploited by individuals that obtain 

resources or services without incurring the costs associated with providing resources or 

services in return (Bronstein 2001b, Ferrière et al. 2002). The most abundant and 

diverse of these exploiters are specialist species obligately associated with their 

mutualist hosts. In plant-pollinator mutualisms, exploiters often feed on a subset of 

developing seeds, but do not pollinate plants. Obligately exploiting species are 

especially diverse in the interactions between figs and their pollinating wasps. While 

most of the 750+ described species of figs are each pollinated by a single host-specific 

wasp species, they are additionally associated with a phylogenetically diverse 

community of non-pollinator wasp species that oviposit within fig syconia. Non-

pollinator wasps are typically host-fig-specific (Weiblen 2002), and each species of fig 

typically includes 2-30 non-pollinating species (Compton and Hawkins 1992). Many of 

these non-pollinating species gall and develop within fig ovules like pollinators, though 

some are parasitoids, cleptoparasites, or inquiline predators of other pollinating or non-

pollinating fig wasps. How non-pollinating exploiter fig wasps, and exploiters more 

generally, affect the dynamics of mutualism remains unclear (Bronstein 2001b, Borges 

2015) . 

 Theoretical studies of plants and their seed-eating pollinators have 

modelled the ecological (e.g. Bronstein et al. 2003, Morris et al. 2003, Wilson et al. A
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2003, Duthie and Falcy 2013) and evolutionary (e.g. Ferrière et al. 2002, Jones et al. 

2009) consequences of exploitation. Exploiters in these models are competitively 

inferior to pollinators because they rely on already pollinated flowers that have not 

already been used for pollinator oviposition (and would otherwise develop into seeds). 

Duthie and Falcy (2013) predict that exploiters will be most abundant where plants are 

isolated, and least abundant where plants are especially aggregated. They predict this 

pattern of exploiter distribution to be caused by pollinators pre-empting plant flowers 

where connectivity between plants is high (i.e., less movement is required among 

plants), leaving the flowers of isolated plants less frequently visited as sites of pollinator 

oviposition and therefore more often available as sites of exploiter oviposition.  

 Here we test the predictions of Duthie and Falcy (2013) using a natural 

community that includes a fig, its species-specific pollinator, and a guild of host-fig-

specific non-pollinators. Using the spatial locations of F. petiolaris trees from six 

populations in Baja California, as well as counts of foundresses, pollinator offspring, 

seeds, and non-pollinator offspring from mature fig syconia, we test four specific 

hypotheses linking tree connectivities to their production of wasps and seeds: 1) the 

mean number of foundresses entering the syconia of a fig tree will increase with fig tree 

connectivity, 2) the mean number of pollinator offspring produced per syconium will 

increase with the mean number of foundresses per syconium on a tree, 3) and the mean 

number of seeds and  4) the mean number of non-pollinator offspring produced per 

syconium will decrease with the mean number of pollinator offspring produced per 

syconium on a tree. 

 

Material and methods 

Study species and site 
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The monoecious Sonoran Desert rock fig, F. petiolaris (family Moraceae, subgenus 

Urostigma, section Americana), is endemic to the Sonoran Desert of Baja California 

and adjacent mainland Mexico. Like all figs, F. petiolaris trees produce enclosed 

inflorescences (syconia) containing numerous uni-sexual female and male flowers. In F. 

petiolaris, the number of uni-ovulate female flowers ranges from 150-700, depending 

on syconium size (unpublished data). These flowers line the inner cavity and possess 

styles of varying length that point towards the syconium's hollow interior. Male flowers 

are fewer and mature weeks later, precluding self-pollination within syconia. Although 

most fig species produce syconia in synchronous bouts (hereafter ``crops'') that can be 

separated by periods of several months to years (Windsor et al. 1989), nearly half of F. 

petiolaris trees produce syconia with at least some degree of within-crown asynchrony 

(Gates and Nason 2012). Asynchronous reproduction allows for greater overlap in 

phenology and outcrossing among trees when population densities are low, as is 

common in F. petiolaris (Gates and Nason 2012). Here we sample only from trees 

located in Baja California, where F. petiolaris is the sole wild species of fig. 

 Ficus petiolaris is pollinated by a single and unnamed specialist species of 

Pegoscapus wasp (superfamily Chalcidoidea, family Agaonidae). Upon arrival to 

``female phase'' trees with receptive syconia, foundresses enter syconia through a small 

bract-lined ostiole, then actively pollinate female flowers while ovipositing through 

styles into a subset of fig ovules (Duthie, personal observation; see supplemental video). 

After pollination and oviposition, syconia enter into ``interphase,'' a period in which 

seeds and ovules galled by wasp larvae develop over several weeks. After development 

is complete, syconia enter into ``male phase'' at which time emerging males compete for 

access to female pollinators. After mating, females collect pollen from mature male 

flowers within syconia, then exit syconia through holes chewed by males to disperse to 

new trees bearing receptive female phase syconia.  A
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 The community of non-pollinating chalcidoid fig wasps associated with F. 

petiolaris in Baja California includes seven species, all of which oviposit into fig 

syconia externally by inserting their ovipositors through syconia walls. Each species of 

non-pollinator is regularly found in all fig populations, often developing within the 

same syconium (Duthie et al. 2015a). The community includes three species of Idarnes 

(family Sycophagidae) and two species of Heterandrium (family Pteromalidae), all of 

which gall fig ovules within the same syconia as  pollinators, and likely compete with 

pollinators and each other for limiting ovule resources (Duthie et al. 2015a). The 

community also includes a species of Aepocerus (family Pteromalidae), which oviposits 

early in the female phase of syconium development and produces especially large galls 

that protrude into the centre of syconia and appear to originate from the tissue of the 

syconium wall. The use of apparently different syconium resources and the early 

oviposition of Aepocerus make it unlikely to be a competitor of galling wasps, but its 

use of space within syconia might make its interaction amensal by crowding out other 

species. Aepocerus is host to a specialist parasitoid of the genus Physothorax (family 

Torymidae). 

 

Mapping and sampling of fig trees  

Trees of F. petiolaris were mapped for six sites along a latitudinal gradient on 

the Baja California peninsula (Site 70, Lat. = 23.73769, Lon. = -109.82887; Site 96, 

24.03380, -110.12570; Site 112, Lat. = 27.56043 , Lon. = -113.06719; Site 113, 

27.14852, -112.43554; Site 172, 28.29069, -113.11197; Site 158, 29.2627, -114.02090). 

In the summer (dry season) of 2007, 2010, and 2013, a total of 859 mature, male phase 

syconia from 80 crops were collected. The volume of each collected syconium was 

measured, then syconia were partially cut open and placed in individual vials overnight 

(min 12 hrs) to allow sufficient time for new adult wasps to emerge. Emerged wasps 
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were preserved in 95% ethanol, then shipped to Iowa State University where counts of 

pollinators and non-pollinators were obtained for individual syconia. Because foundress 

Pegoscapus wasps die within the syconium in which they pollinate and oviposit (Herre 

1989), and foundress corpses (at a minimum their head capsules) remain intact inside 

syconia through male phase, we were also able to obtain estimates of arriving 

foundresses for each syconium. For each crop, we quantify foundress visitation rate as 

the mean number of foundresses collected per syconium; visitation therefore requires 

that females arrive at trees and enter a syconium. Per syconium foundress counts 

normally ranged from 1-4 but also included unpollinated, zero-foundress syconia, which 

are sometimes induced to mature when containing sufficient numbers of developing 

non-pollinator wasps. These syconia produce non-pollinators but not pollinator 

offspring or seeds. To estimate seed counts, syconia were dried, and seeds were placed 

in separate coin envelopes and shipped to Iowa State University. Seed counts were 

sampled for 120 syconia from 11 trees.  

 

Analyses 

 For each tree from which syconia were sampled, we defined local tree 

density as tree connectivity using the distance to the n
th

 nearest neighbour of the focal 

tree. Advantages of using the n
th

 nearest neighbour (as opposed to simply nearest-

neighbour) have long been known to include an increase in accuracy of density 

determination, and the detection of large-scale heterogeneity (Thompson 1956, Shaw 

and Wheeler 1985). For ease of interpretation, we define rn as -1 times the distance to 

the n
th

 nearest neighbour in km because after multiplying by -1, rn increases with tree 

connectivity.  To ensure that our results were not scale dependent, we used four n 

values: n = 5, 10, 20, and 40. Because our results were robust to different rn values, we 
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present n = 20 in our primary results; other scales are reported in supplemental material 

(Appendix 1, Tables A1-A4).  

 To determine the relationship between foundresses visitation rate and rn , 

we used R (R Development Core Team 2015) to fit a linear regression model using 

mean foundresses per syconium on a crop as a dependent variable and rn as an 

independent variable; syconium volume and tree latitude were also included as 

covariates. To test the effect of fig tree connectivity on pollinator, seed, and non-

pollinator production, the same analysis was performed using mean counts of pollinator, 

seed, and non-pollinators produced per syconium on a crop as dependent variables. In 

the case of non-pollinators, only gallers of fig ovules were used in the analysis, which 

included all Idarnes and Heterandrium and excluded Aepocerus and Physothorax 

(Duthie et al. 2015a).  In all regressions, data points (mean foundresses, wasps, or seeds 

per syconium) were weighted by the number of syconia sampled per crop. 

 Regressions predicting pollinator, non-pollinator, and seed densities 

included mutiple relevant covariates. When regressing pollinator densities against 

foundresses per syconium, rn, syconium volume, and tree latitude were included as 

covariates. Similarly, when regressing non-pollinator densities against pollinator 

densities, rn, syconium volume, tree latitude, and foundresses per syconium were all 

included as covariates. Finally, when regressing seed densities against pollinator 

densities, rn, syconium volume, tree latitude, foundresses, and non-pollinators were 

included as covariates. In particular, the number of foundresses has been shown to have 

a positive effect on pollinator offspring production in other Ficus (e.g. Herre 1989, West 

et al. 1996), and models of plant-pollinator-exploiter interactions predict the rate of 

foundress arrival to affect pollinator, seed, and non-pollinator densities within plants 

(Bronstein et al. 2003, Morris et al. 2003, Wilson et al. 2003, Duthie and Falcy 2013). 

When considering non-pollinator density, we included foundresses as a covariate A
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because theory predicts the rate of foundress arrival to decrease non-pollinator 

production through the production of pollinators. Additionally, pollinator and non-

pollinator production were included as covariates when considering seed production, as 

wasp production might come at the cost of developing seeds. 

 

Effect of fig connectivity on non-pollinator species 

 The production of any individual species of non-pollinator wasp is likely 

to be affected by its ability to disperse to receptive fig trees, with weaker dispersers 

observed most where fig trees are aggregated. In contrast, non-pollinators that are better 

dispersers will not be observed as much where fig trees are aggregated, and the 

production of these exploiters may be reduced by the preemption of ovules by 

pollinators, as well as competition from other non-pollinators. Consequently, while we 

predict increased pollinator production to decrease non-pollinator production overall 

where tree connectivity is high, we expect the production of better dispersers to 

decrease most with tree connectivity (Duthie et al. 2014). Ideally, species dispersal 

ability would be measured directly, but the small body size of wasps made such 

measurements infeasible. Instead, we used the wing loadings of F. petiolaris non-

pollinators as estimated in Duthie et al. (2015a) and published in the Dryad Digital 

Repository (Duthie et al. 2015b). Wing loadings of F. petiolaris non-pollinators 

calculate the ratio of insect body volume to wing surface area (Duthie et al. 2015a). 

Wing loadings are typically negatively correlated with dispersal ability in insects (e.g. 

Harrison 1980, Fric et al. 2006), as appears to be the case for the five non-pollinating fig 

wasps on which we focus (Duthie et al. 2015a).  To evaluate support for our prediction 

that the density of better dispersing non-pollinators will decrease with increasing tree 

connectivity, we first estimated the slope of a linear regression using rn as an 

independent variable and mean non-pollinator species density per crop as a dependent 
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variable.  Positive regression slopes are interpreted to indicate a positive effect of rn on 

species production, whereas negative regression slopes indicate a negative effect of rn 

on production. We tested whether or not species-specific regression slope estimates 

were positively correlated with wing loadings. In another paper (Duthie et al. 2015a), 

we used data from 2010 to test this correlation, counting the number of neighbouring 

trees within a defined radius (e.g. 1 km) of a focal tree, instead of estimating rn. For 

consistency, here we estimate rn, but our results are not qualitatively different between 

methods. In contrast to Duthie et al. (2015a), regression slopes are obtained using 

species densities at the level of individual crops rather than syconia, and in addition to 

mean syconium volume, we additionally include tree latitude, foundress count, and 

pollinator production as covariates when estimating regression slopes.   

 

Results 

Histograms illustrating distributions of mean per syconium foundress counts, pollinator 

production, seed production, and non-pollinator production, are shown in Figure 1. 

Foundress counts increased significantly with tree connectivity (rn; 76 d.f.; P = 0.001; 

Figure 2), with a mean increase of ca 0.03±0.009 foundresses per unit rn (i.e. 0.03 fewer 

foundresses per km to the nearest 20
th

 tree; ± indicates standard error). Foundress counts 

were not affected by syconium volume (P > 0.1), but mean foundress count 

significantly decreased with fig latitude (P = 0.008). Overall, greater connectivity 

among fig trees therefore resulted in more foundresses, and fewer foundresses arrived 

for trees at higher latitudes. 

 We observed a mean per syconium increase of 29±9.186 pollinators per 

foundress (P = 0.002; Figure 3), but pollinator counts were not directly affected by rn, 

syconium volume, or tree latitude (75 d.f.; P > 0.1; note, when foundresses were 

removed from the linear model, rn had a marginally significant positive effect on A
cc

ep
te

d
 A

rt
ic

le



‘This article is protected by copyright. All rights reserved.’ 

 

pollinator counts, P = 0.055). Pollinator production also increased with foundress 

arrival at the scale of individual syconia (see Appendix 1, Figure A1). We observed a 

mean per syconium decrease of 0.132±0.048 non-pollinators per pollinator (P = 0.007; 

Figure 4). Overall, non-pollinators were not directly affected by rn (74 d.f.; P = 0.067), 

syconium volume, tree latitude, or foundresses (P > 0.1; note, non-pollinator counts 

significantly decreased with rn when either pollinators [P = 0.047] or both pollinators 

and foundresses [P = 0.018] were removed from the linear model). Seed production per 

syconium decreased by 0.527±0.133 per pollinator (P = 0.029; Figure 5), and seed 

production significantly increased or decreased with all covariates except rn (3 d.f.; P > 

0.1). Specifically, on each crop sampled, we observed a mean per syconium increase of 

0.044±0.010 seeds per mm
3
 syconia volume (P = 0.021), a decrease of 303±0.812 seeds 

per unit of tree latitude (P = 0.033), an increase of 71.07±18.92 seeds per foundress (P 

= 0.033), and a decrease of 3.448±0.605 seeds per non-pollinator (P = 0.011). 

 Although non-pollinators as a group did not significantly increase or 

decrease with tree connectivity, we found among species variation in the effect of tree 

connectivity on non-pollinator production. Consistent with Duthie et al. (2015a), species 

with lower wing loadings tended to be more negatively associated with tree connectivity 

than species with higher wing loadings (Figure 6; P = 0.051; R
2
 = 0.768). Over all rn 

scales considered, only the production of the non-pollinator species with the highest 

wing loading significantly increased  with tree connectivity, with 0.583±0.228 more 

individuals produced per syconium per unit rn (LO1; Figure 6; P = 0.011). The species 

with the third highest wing loading was the only species of non-pollinator for which the 

effect of rn was not significant (SO1; Figure 6; P > 0.1). For the three remaining species 

of non-pollinators, the effect of rn was significantly negative, decreasing per syconium 

species production by 0.073±0.023 (Het2; Figure 6; P = 0.002), 0.318±0.133 (SO2; 

Figure 6; P = 0.019), and 0.931±0.070 (Het1; Figure 6; P < 0.001). Effects of mean A
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syconium volume, crop latitude, mean foundress counts, and mean pollinator production 

are reported in Table 1. 

 

Discussion 

The syconia of fig trees are temporally and spatially ephemeral resources for both 

pollinating and non-pollinating fig wasps. Although some fig species regularly fruit 

asynchronously (e.g. Bronstein and Patel 1992, Cook and Power 1996), including F. 

petioliaris (Gates and Nason 2012), syconia production is never continuous. Fig wasps 

must routinely search for new fig trees with receptive syconia, which may be located far 

from their natal trees (Nason et al. 1996, 1998, Ahmed et al. 2009). This is likely to lead 

to both high and highly variable dispersal mortality, which will be affected by the 

location and timing of syconia development in conspecific fig trees. Consequently, the 

rate at which pollen-bearing foundress wasps arrive to fig syconia is likely to vary 

greatly in space and time. Further, because the arrival rate of foundresses is predicted to 

directly affect the production of  pollinator offspring, seeds, and exploiter offspring 

(Bronstein et al. 2003, Morris et al. 2003, Wilson et al. 2003, Duthie and Falcy 2013), 

the spatio-temporal dynamics of syconia availability may be fundamental to the 

distributions of species in fig and fig wasp communities. Despite high predicted 

stochasticity in syconia availability, we found strong support for our four hypotheses. 1) 

The spatial aggregation of fig trees (tree connectivity) was positively associated with the 

number of foundresses entering fig syconia, which in turn 2) was positively associated 

with pollinator production, while pollinator production was negatively associated with 

both 3) seed production and 4) non-pollinator production. Overall, these patterns are 

strongly consistent with plant-pollinator-exploiter theory, which predicts that the 

aggregation of plants will attract high rates of foundress visitation, increasing the 
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production of pollinator offspring and in turn decreasing seed and overall non-pollinator 

production (Duthie and Falcy 2013). 

 We conclude that the distribution of foundresses among trees is likely to 

be a fundamental predictor of pollinator, non-pollinator, and seed distributions on the 

landscape of figs and related systems. Where foundress arrival is relatively high, 

pollinators are expected to be relatively more abundant, and where foundress arrival is 

low, non-pollinators are likely to be relatively more abundant. Consequently, pollinators 

are likely to be spatially aggregated in areas of high tree connectivity, and non-

pollinators are more likely to be spatially aggregated in areas of low tree connectivity. 

The spatial aggregation of pollinators and non-pollinators may have broad implications 

for the ecology and evolution of fig-fig wasp mutualisms and related systems. When 

nearby wasps compete directly for access to developing flowers, pollinator and non-

pollinator spatial aggregation is expected to result in higher intraspecific competition. 

Morris et al. (2003) modelled the impact of intraspecific competition on community 

dynamics and coexistence in seed-eating mutualisms that include a species of exploiter. 

They found increasing intraspecific competition for both pollinators and non-pollinating 

exploiters to greatly widen the range of demographic parameters over which stable 

coexistence occurs, even given the competitive superiority of pollinators. The spatial 

aggregation of pollinators and exploiters may therefore facilitate coexistence through 

intraspecific competition in the F. petiolaris community. Additionally, regions where 

fig trees are sparser and visited less frequently by foundresses may be especially 

influential in maintaining populations of non-pollinators. Our results showing an 

increase in overall non-pollinator production where fig trees have fewer nearby 

conspecifics are comparable to those of Wang et al. (2005), who examined the 

production of pollinating and non-pollinating fig wasps associated with F. racemosa in 

primary forest, fragmented forest, and highly fragmented forest in Xishuangbanna, A
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Yunnan, China. They observed the proportion of non-pollinating wasps to be 

significantly higher in highly fragmented forest habitat than in primary forest habitat. 

We hypothesise that high non-pollinator abundance in such fragmented populations may 

be driven by decreased foundress arrival caused by low tree connectivity. 

 In addition to affecting species population dynamics and coexistence, 

increased exploitation from non-pollinators in regions where figs trees are sparse may 

have long-term consequences for the evolutionary stability of the fig-fig wasp 

mutualism. In mutualism, theory predicts competitive asymmetry between mutualists 

and exploiters to be critical to evolutionary stability (Ferrière et al. 2002). When 

mutualists are not competitively superior to exploiters, selection is expected to reduce 

the amount of goods or services provided by mutualists to their partners, ultimately 

driving the mutualism to extinction. Thus, even if mutualist communities that include 

exploiters are ecologically stable, the long-term evolutionary persistence of these 

communities is not guaranteed (Ferrière et al. 2002,  Jones et al. 2009). Jones et al. 

(2009) examined the role of mutualist and exploiter intraspecific competition in long-

term mutualism evolutionary stability. They found increased intraspecific competition 

of mutualists and exploiters to be highly stabilising, leading to coevolutionary stable 

equilibria that result in the coexistence of all species. Among competitors, intraspecific 

competition is expected to be increased when species aggregate spatially near limiting 

resources. The spatial aggregation of pollinators and non-pollinators observed here and 

in other fig wasp associations (Wang et al. 2005) therefore predicts increased 

intraspecific competition, and may contribute to the coevolutionary stability of the fig-

fig wasp mutualism, and mutualisms that include exploiters more generally. 

 Pollinator production had a negative effect on the production of each 

species of non-pollinator, but this effect was statistically significant for only two of five 

non-pollinator species considered individually (Table 1). Additionally, tree connectivity A
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was negatively associated with the production of three non-pollinator species, and 

positively associated with one species. This pattern is consistent with a previous study 

(Duthie et al. 2015a) that identified a life history tradeoff between species dispersal 

abilities and egg loads of the five non-pollinators observed here, and which focused on 

potential competition among non-pollinators. Overall, species with phenotypes 

associated with low dispersal ability (e.g. high wing loading) have higher egg loads, but 

are less likely to be found where tree connectivity is low due to dispersal limitations. In 

contrast, species with high dispersal abilities will have lower egg loads, but will be less 

restricted by tree connectivity. As such, although tree connectivity might increase the 

rate at which foundresses arrive at a receptive fig tree, thereby increasing pollinator 

offspring production and decreasing non-pollinator offspring production as a whole 

(Figure 4), the consequences of tree connectivity might differ among individual species 

of non-pollinators. Highly fecund, less mobile, non-pollinating fig wasps might be 

competitively superior to other non-pollinators where dispersal distances between natal 

and receptive fig trees are low (Duthie et al. 2014; 2015a), resulting in a net benefit in 

these species' growth rates. In contrast, less fecund but highly mobile non-pollinator 

species might benefit where tree connectivity is low due to limited competition from 

pollinators and highly fecund non-pollinators. Although more work is needed to 

determine the nature and strength of competition among pollinators and the non-

pollinator species included in this study, it is likely that fig ovules are shared limiting 

resources at least some of the time, and that competition therefore occurs between 

pollinators and the five non-pollinator species on which we focused. Further, although 

species of Idarnes and Heterandrium on other Ficus hosts are observed to be 

cleptoparasites (attacking already parasitised tissue) of pollinators rather than 

competitors (Elias et al. 2008, Cruaud et al. 2011), this is unlikely for the five species 

we observe on F. petiolaris.  All species of Idarnes and Heterandrium were observed A
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within syconia in which no foundresses arrived and no pollinator offspring were 

produced, meaning that they cannot rely on pollinators to complete their development. 

Further, all species of Idarnes and Heterandrium were observed in the absence of each 

other species within syconia, meaning that species are also unlikely to be cleptoparasites 

of one another. Nevertheless, further studies will benefit from a more detailed 

investigation of how ovules are used and species interact within fig syconia (e.g. Ghara 

et al. 2011, 2014), and how wasps differ in their time of arrival to (e.g. Ghara and 

Borges 2010, Elias et al. 2008) and departure from (e.g. Greeff and Ferguson 1999) 

syconia. Seasonality may also be important for predicting species interactions and 

distributions (Warren et al. 2010; Wang et al. 2015). Overall, however, we conclude that 

tree connectivity will be an important factor affecting wasp distributions and population 

dynamics. 

 Our results may also have broad implications for the ability of plants 

associated with seed-eating pollinators to adapt to new habitats, especially at the 

margins of plant ranges. Areas where plants are especially aggregated are likely to be 

high quality habitat. If high habitat quality leads to both high local plant density and, in 

turn, disproportionately high pollinator production, then plant populations will be 

gender dimorphic, with plants in higher habitat quality being functionally more male 

than plants in lower habitat quality. At the landscape level, aggregated plants in high 

quality habitats will be net exporters of pollinators, and more sparsely distributed plants 

in lower quality habitats will be net exporters of seeds. Depending on the degree to 

which pollen versus seed dispersal contributes to total gene flow, the genetic structure 

of plants may be dominated by gene flow from high density locals (if pollen contributes 

more total gene flow) or from more sparsely distributed plants in less high quality 

habitats (if seeds contribute more total gene flow). For most plants, gene flow via pollen 

flow is typically over an order of magnitude higher than gene flow via seed flow (Petit A
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et al. 2005). Figs appear to be no exception, with genetic evidence indicating that pollen 

transfer contributes more strongly to gene flow than seed dispersal among fig 

populations (Yu et al. 2010, Yu and Nason 2013). In a study of F. hirta, the ratio of 

pollen to seed migration was observed to be 16.2-36.3 (Yu et al. 2010). Given the 

dominance of gene flow from pollen transfer, the genetic structure of fig populations is 

likely to be influenced disproportionately by trees in aggregated patches where habitat 

quality is high. Such disproportionate gene flow from areas of high habitat quality to 

low habitat quality may erode the influence of natural selection on local adaptation, 

limiting adaptation to novel environments at the margins of fig ranges (Gaston 2009). In 

the northernmost parts of the range of F. petiolaris, plants often occur in small and 

fragmented populations (Gates and Nason 2012), where foundress arrival is expected to 

be low. Consistent with these observations, we found that the arrival of pollinating 

foundresses decreased with increasing latitude. Because foundress visitation increases 

pollinator production, plants on the northernmost edge of the range of F. petiolaris 

might contribute relatively little to gene flow. Instead, high gene flow contributed by 

pollen carried by foundresses originating from lower latitudes of higher habitat quality 

may swamp local selection in northern regions, thereby limiting adaptation in marginal 

habitats (Kirkpatrick and Barton 1997; Polechová and Barton 2015).  

 In conclusion, we find predictions of Duthie and Falcy (2013) to be 

strongly supported by data collected from F. petiolaris and its associated fig wasps. 

When conspecific fig trees are aggregated, syconia receive higher numbers of 

foundresses to pollinate and oviposit into flowers. More foundresses result in a 

relatively high proportion of flowers used for developing pollinators. Where trees are 

relatively isolated, fewer foundresses arrive to syconia, leading to increased exploitation 

of the mutualism. Our results show that the connectivity of plants that rely on seed-

eating pollinators is central to understanding the distributions of mutualists and A
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exploiters. We conclude that the spatial connectivity of mutualists is likely a key driver 

of mutualist distributions, and of mutualist susceptibility to exploitation. 
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FIGURE LEGENDS 

Figure 1: Distributions of the mean per syconium density of arriving pollinator 

foundresses, pollinator offspring, seeds, and non-pollinators on crops of the Sonoran 

Desert rock fig, Ficus petiolaris collected from six sites in Baja, California. Samples 

include 80 crops from 75 unique trees for foundress, pollinator, and non-pollinator 

distributions and 11 crops from 11 unique trees for seed distributions. 
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Figure 2: Relationship between tree connectivity (distance in kilometers to the nearest 

20th neighbouring tree) and the mean number of arriving pollinator foundresses per 

syconium collected from 80 crops from 75 unique trees of the Sonoran Desert rock fig. 
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Figure 3: Relationship between the mean number of arriving pollinator foundresses per 

syconium and mean number of pollinator offspring per syconium collected from 80 

crops from 75 unique trees of the Sonoran Desert rock fig. 
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Figure 4: Relationship between the mean number of pollinator offspring per syconium 

and the mean mean number of non-pollinator offspring per syconium collected from 80 

crops from 75 unique trees of the Sonoran Desert rock fig. 
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Figure 5: Relationship between mean per syconium seed production and four variables 

collected from 11 crops from 11 unique trees of the Sonoran Desert rock fig. Panels 

show how seed production increase with the mean per syconium number of arriving 

pollinator foundresses (a), decreases with the mean  number of pollinators (b) and mean 

number of non-pollinators (c) per syconium, and increases with mean syconium volume 

(d). 
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Figure 6: Relationship between the wing loadings of 5 non-pollinating fig wasps 

associated with the Sonoran Desert rock fig, and the effect that tree connectivity (rn = 

distance to the nearest 20th neighbouring tree) has on the per syconium density of each 

species. The effect of tree connectivity on non-pollinator species density is estimated by 

regressing rn against the mean per syconium density of an individual non-pollinator 

species on a crop. Positive values on the y-axis indicate that tree connectivity increased 

the density of a non-pollinator species, and negative values indicate that connectivity 

decreased density. Error bars show 95% confidence intervals. 
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Table 1:  Effects of five independent variables on within-crop (crop is defined as a 

single bout of reproduction observed on a tree) per syconium densities of five non-

pollinating fig wasps associated with Ficus petiolaris. For each species, non-pollinator 

density is estimated as a function of tree connectivity (rn = distance to the nearest 20
th

 

neighbouring tree), mean syconium volume, the latitude of the crop from syconia were 

sampled, the mean number of pollinating foundresses arriving per syconium on the 

crop, and the mean number of pollinator offspring produced per syconium on the crop. 

Data were collected from 859 syconia on 80 F. petiolaris crops from 75 trees in Baja, 

California. Numbers indicate multiple regression coefficients for each covariate and for 

each species. Significance is indicated at the 0.05 (*), 0.01 (**), and 0.001 (***) levels, 

and ± indicates standard errors. 

Exploiter species 

Description LO1 Het2 SO1 SO2 Het1 

Genus   Idarnes  Heterandrium Idarnes

  Idarnes  Heterandrium 

Variable 

Tree Connectivity 0.593*±0.228 -0.073**±0.023 0.123±0.078 -0.318*±0.133 -

0.931***±0.697 

Syconium Volume 0.001±0.001 0.000±0.000 -0.001*±0.000 -0.001±0.001

 0.000±0.000 

Crop Latitude  1.473*±0.602 -0.003±0.059 -0.808***±0.21 -0.326±0.351 -

0.124±0.184 

Foundress Count  -0.744±2.818 0.171±0.278 1.201±0.966

 2.403±1.642 -0.164±0.861 

Pollinator Production -0.041±0.033 -0.005±0.003 -0.025*±0.011 -0.037±0.019 -

0.025*±0.010 
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